Automorphisms of Riemann--Cartan Manifolds
Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 544-556.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the maximal dimension of the Lie group of automorphisms of an $n$-dimensional Riemann–Cartan manifold (space) $(M^{n},g,\widetilde{\nabla})$ equals ${n(n-1)}/2+1$ for $n>4$ and, if the connection $\widetilde{\nabla}$ is semisymmetric, for $n\geqslant2$. If $n=3$, then the maximal dimension of the group equals 6. Three-dimensional Riemann–Cartan spaces $(M^{3},g,\widetilde{\nabla})$ with automorphism group of maximal dimension are studied: the torsion $s$ and the curvature $\widetilde{k}$ are introduced, and it is proved that $s$ and $\widetilde{k}$ are characteristic constants of the space and $\widetilde{k}=k-s^{2}$, where $k$ is the sectional curvature of the Riemannian space $(M^{3},g)$; a geometric interpretation of torsion is given. For Riemann–Cartan spaces with antisymmetric connection, the notion of torsion at a given point in a given three-dimensional direction is introduced.
Keywords: Riemann–Cartan manifold, Lie group of automorphisms, curvature.
Mots-clés : automorphism group of maximal dimension, torsion
@article{MZM_2015_98_4_a4,
     author = {V. I. Panzhenskij},
     title = {Automorphisms of {Riemann--Cartan} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {544--556},
     publisher = {mathdoc},
     volume = {98},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a4/}
}
TY  - JOUR
AU  - V. I. Panzhenskij
TI  - Automorphisms of Riemann--Cartan Manifolds
JO  - Matematičeskie zametki
PY  - 2015
SP  - 544
EP  - 556
VL  - 98
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a4/
LA  - ru
ID  - MZM_2015_98_4_a4
ER  - 
%0 Journal Article
%A V. I. Panzhenskij
%T Automorphisms of Riemann--Cartan Manifolds
%J Matematičeskie zametki
%D 2015
%P 544-556
%V 98
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a4/
%G ru
%F MZM_2015_98_4_a4
V. I. Panzhenskij. Automorphisms of Riemann--Cartan Manifolds. Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 544-556. http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a4/

[1] I. A. Gordeeva, V. I. Panzhenskii, S. E. Stepanov, “Mnogoobraziya Rimana–Kartana”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 123, VINITI, M., 2009, 110–141 | MR

[2] I. E. Tamm, “O krivom impulsnom prostranstve”, Sobranie nauchnykh trudov, T. 2, Nauka, M., 1975, 218–225

[3] I. E. Tamm, V. G. Vologodskii, “Ob ispolzovanii krivogo impulsnogo prostranstva pri postroenii nelokalnoi evklidovoi teorii polya”, Sobranie nauchnykh trudov, T. 2, Nauka, M., 1975, 226–253

[4] I. P. Egorov, Dvizheniya v prostranstvakh affinnoi svyaznosti, Izd-vo Kazansk. un-ta, Kazan, 1965

[5] V. I. Panzhenskii, “Avtomorfizmy prostranstvenno-vremennogo mnogoobraziya Rimana–Kartana”, Trudy mezhdunarodnogo geometricheskogo tsentra, 5:2 (2012), 27–34

[6] K. Yano, S. Bokhner, Krivizna i chisla Betti, IL, M., 1957 | MR | Zbl

[7] L. P. Eizenkhart, Nepreryvnye gruppy preobrazovanii, IL, M., 1947 | Zbl

[8] H.-C. Wang, “Finsler spaces with completely integrable equations of Killing”, J. London Math. Soc., 22 (1947), 5–9 | DOI | MR | Zbl

[9] D. Montgomery, H. Samelson, “Transformation groups of spheres”, Ann. of Math. (2), 43 (1943), 454–470 | DOI | MR | Zbl

[10] Sh. Kobayasi, Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 | MR | Zbl

[11] A. P. Norden, Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR | Zbl

[12] L. P. Eizenkhart, Rimanova geometriya, IL, M., 1948 | Zbl

[13] S. Sternberg, Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl

[14] V. I. Panzhenskii, “Maksimalno podvizhnye rimanovy prostranstva s krucheniem”, Matem. zametki, 85:5 (2009), 754–757 | DOI | MR | Zbl

[15] S. E. Stepanov, I. A. Gordeeva, “Psevdokillingovy i psevdogarmonicheskie vektornye polya na mnogoobrazii Rimana–Kartana”, Matem. zametki, 87:2 (2010), 267–279 | DOI | MR | Zbl