Mots-clés : Fourier–Laplace sum, Gegenbauer polynomial
@article{MZM_2015_98_4_a3,
author = {R. A. Lasuriya},
title = {Direct and {Inverse} {Theorems} on the {Approximation} of {Functions} by {Fourier{\textendash}Laplace} {Sums} in the {Spaces} $S^{(p,q)}(\sigma^{m-1})$},
journal = {Matemati\v{c}eskie zametki},
pages = {530--543},
year = {2015},
volume = {98},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a3/}
}
TY - JOUR
AU - R. A. Lasuriya
TI - Direct and Inverse Theorems on the Approximation of Functions by Fourier–Laplace Sums in the Spaces $S^{(p,q)}(\sigma^{m-1})$
JO - Matematičeskie zametki
PY - 2015
SP - 530
EP - 543
VL - 98
IS - 4
UR - http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a3/
LA - ru
ID - MZM_2015_98_4_a3
ER -
%0 Journal Article
%A R. A. Lasuriya
%T Direct and Inverse Theorems on the Approximation of Functions by Fourier–Laplace Sums in the Spaces $S^{(p,q)}(\sigma^{m-1})$
%J Matematičeskie zametki
%D 2015
%P 530-543
%V 98
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a3/
%G ru
%F MZM_2015_98_4_a3
R. A. Lasuriya. Direct and Inverse Theorems on the Approximation of Functions by Fourier–Laplace Sums in the Spaces $S^{(p,q)}(\sigma^{m-1})$. Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 530-543. http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a3/
[1] R. A. Lasuriya, “Pryamye i obratnye teoremy priblizheniya funktsii, zadannykh na sfere v prostranstve $S^{(p,q)}(\sigma^m)$”, Ukr. matem. zhurn., 59:7 (2007), 901–911 | MR | Zbl
[2] A. I. Stepanets, Metody teorii priblizhenii, Ch. 2, Pratsi In-tu matem. NAN Ukraïni, 40, In-t matem. NAN Ukraïni, Kiïv, 2002
[3] A. I. Stepanets, A. S. Serdyuk, “Pryamye i obratnye teoremy priblizheniya funktsii v prostranstve $S^p$”, Ukr. matem. zhurn, 54:1 (2002), 106–124 | MR | Zbl
[4] H. Berens, P. L. Butzer, S. Pawelke, “Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten”, Publ. Res. Inst. Math. Sci. Ser. A, 4:2 (1968), 201–268 | DOI | MR | Zbl
[5] S. M. Nikolskii, P. I. Lizorkin, “Approksimatsiya funktsii na sfere”, Izv. AN SSSR. Ser. matem., 51:3 (1987), 635–651 | MR | Zbl
[6] Ar. S. Dzhafarov, “O sfericheskikh analogakh klassicheskikh teorem Dzh. Dzheksona i S. N. Bernshteina”, Dokl. AN SSSR, 203:2 (1972), 278–281 | Zbl
[7] G. G. Kushnirenko, “O priblizhenii funktsii, zadannykh na edinichnoi sfere, konechnymi sfericheskimi summami”, Nauchnye doklady vysshei shkoly. Fiz.-matem. nauki, 4 (1958), 47–53 | Zbl
[8] I. V. Petrova, “Teorema Dzheksona i prostranstvo Besova na sfere”, Dokl. AN SSSR, 278:3 (1984), 544–549 | MR | Zbl
[9] Kh. P. Rustamov, “O priblizhenii funktsii na sfere”, Izv. RAN. Ser. matem., 57:5 (1993), 127–148 | MR | Zbl
[10] P. L. Butzer, “A survey of work on approximation at Aachen, 1968–1972”, Approximation Theory, Academic Press, New York, 1973, 31–100 | MR | Zbl
[11] V. V. Shalaev, “Tochnye otsenki priblizheniya nepreryvnykh na sfere funktsii lineinymi operatorami tipa svertki”, Ukr. matem zhurn., 43:4 (1991), 565–567 | MR | Zbl
[12] V. V. Arestov, V. Yu. Popov, “Neravenstva Dzheksona na sfere v $L_2$”, Izv. vuzov. Matem., 1995, no. 8, 13–20 | MR | Zbl
[13] A. G. Babenko, “Tochnoe neravenstvo Dzheksona–Stechkina v prostranstve $L^2$ funktsii na mnogomernoi sfere”, Matem. zametki, 60:3 (1996), 333–355 | DOI | MR | Zbl
[14] D. V. Gorbachev, “Tochnoe neravenstvo Dzheksona v prostranstve $L_p$ na sfere”, Matem. zametki, 66:1 (1999), 50–62 | DOI | MR | Zbl
[15] V. F. Babenko, V. G. Doronin, A. A. Ligun, A. A. Shumeiko, “O neravenstvakh tipa Dzheksona dlya funktsii, zadannykh na sfere”, Ukr. matem. zhurn., 57:3 (2005), 291–304 | MR | Zbl
[16] V. Yu. Popov, “Priblizhenie na sfere v $L_2$”, Dokl. AN SSSR, 301:4 (1988), 793–797 | MR | Zbl
[17] N. I. Chernykh, “O neravenstve Dzheksona v $L_2$”, Priblizhenie funktsii v srednem, Tr. MIAN SSSR, 88, 1967, 71–74 | MR | Zbl
[18] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR | Zbl