Direct and Inverse Theorems on the Approximation of Functions by Fourier--Laplace Sums in the Spaces $S^{(p,q)}(\sigma^{m-1})$
Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 530-543

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove direct and inverse theorems on the approximation of functions by Fourier–Laplace sums in the spaces $S^{(p,q)}(\sigma^{m-1})$, $m\ge 3$, in terms of best approximations and moduli of continuity and consider the constructive characteristics of function classes defined by the moduli of continuity of their elements. The given statements generalize the results of the author's work carried out in 2007.
Keywords: approximation of functions, the spaces $S^{(p,q)}(\sigma^{m-1})$, modulus of continuity, Parseval's equality, Jackson-type inequality, Bernstein–Stechkin–Timan-type inequality.
Mots-clés : Fourier–Laplace sum, Gegenbauer polynomial
@article{MZM_2015_98_4_a3,
     author = {R. A. Lasuriya},
     title = {Direct and {Inverse} {Theorems} on the {Approximation} of {Functions} by {Fourier--Laplace} {Sums} in the {Spaces} $S^{(p,q)}(\sigma^{m-1})$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {530--543},
     publisher = {mathdoc},
     volume = {98},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a3/}
}
TY  - JOUR
AU  - R. A. Lasuriya
TI  - Direct and Inverse Theorems on the Approximation of Functions by Fourier--Laplace Sums in the Spaces $S^{(p,q)}(\sigma^{m-1})$
JO  - Matematičeskie zametki
PY  - 2015
SP  - 530
EP  - 543
VL  - 98
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a3/
LA  - ru
ID  - MZM_2015_98_4_a3
ER  - 
%0 Journal Article
%A R. A. Lasuriya
%T Direct and Inverse Theorems on the Approximation of Functions by Fourier--Laplace Sums in the Spaces $S^{(p,q)}(\sigma^{m-1})$
%J Matematičeskie zametki
%D 2015
%P 530-543
%V 98
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a3/
%G ru
%F MZM_2015_98_4_a3
R. A. Lasuriya. Direct and Inverse Theorems on the Approximation of Functions by Fourier--Laplace Sums in the Spaces $S^{(p,q)}(\sigma^{m-1})$. Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 530-543. http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a3/