Embedding of Sobolev Space in the Case of the Limit Exponent
Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 498-510.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the embeddings of the Sobolev space $W_p^s$ and the space $B_{pq}^s$ (in the case of the limit exponent) in the spaces of locally summable functions of zero smoothness. This refines the embeddings of the Sobolev space in the Lorentz space and in the Lorentz–Zygmund space. The relationship between the Lorentz spaces and the corresponding spaces of functions of zero smoothness is established. Similar embeddings of the spaces of potentials are determined.
Keywords: Sobolev space $W_p^s$, the space $B_{pq}^s$, locally summable function of zero smoothness, Lorentz space, Lorentz–Zygmund space, space of potentials.
@article{MZM_2015_98_4_a1,
     author = {O. V. Besov},
     title = {Embedding of {Sobolev} {Space} in the {Case} of the {Limit} {Exponent}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {498--510},
     publisher = {mathdoc},
     volume = {98},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a1/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Embedding of Sobolev Space in the Case of the Limit Exponent
JO  - Matematičeskie zametki
PY  - 2015
SP  - 498
EP  - 510
VL  - 98
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a1/
LA  - ru
ID  - MZM_2015_98_4_a1
ER  - 
%0 Journal Article
%A O. V. Besov
%T Embedding of Sobolev Space in the Case of the Limit Exponent
%J Matematičeskie zametki
%D 2015
%P 498-510
%V 98
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a1/
%G ru
%F MZM_2015_98_4_a1
O. V. Besov. Embedding of Sobolev Space in the Case of the Limit Exponent. Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 498-510. http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a1/

[1] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl

[2] A. Gogatishvili, P. Koskela, Y. Zhou, “Characterization of Besov and Triebel–Lizorkin spaces on metric measure spaces”, Forum Math., 25:4 (2013), 787–819 | MR | Zbl

[3] O. V. Besov, “K teoreme vlozheniya Soboleva dlya predelnogo pokazatelya”, Funktsionalnye prostranstva i smezhnye voprosy analiza, Tr. MIAN, 284, MAIK, M., 2014, 89–104 | DOI | Zbl

[4] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR | Zbl

[5] V. I. Kolyada, “O sootnosheniyakh mezhdu modulyami nepreryvnosti v raznykh metrikakh”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 12, Tr. MIAN SSSR, 181, Nauka, M., 1988, 117–136 | MR | Zbl

[6] R. O'Neil, “Convolution operators in $L(p,q)$ spaces”, Duke Math. J., 30 (1963), 129–142 | DOI | MR | Zbl

[7] J. Peetre, “Espaces d'interpolation et théorème de Soboleff”, Ann. Inst. Fourier (Grenoble), 16:1 (1966), 279–317 | DOI | MR | Zbl

[8] V. I. Yudovich, “O nekotorykh otsenkakh, svyazannykh s integralnymi operatorami i resheniyami ellipticheskikh uravnenii”, Dokl. AN SSSR, 138:4 (1961), 805–808 | Zbl

[9] K. Hansson, “Imbedding theorems of Sobolev type in potential theory”, Math. Scand., 45:1 (1979), 77–102 | MR | Zbl

[10] A. Cianchi, “Optimal Orlicz–Sobolev embeddings”, Rev. Mat. Iberoamericana, 20:2 (2004), 427–474 | DOI | MR | Zbl

[11] H. Triebel, The Structure of Functions, Monogr. Math., 97, Birhäuser Verlag, Basel, 2001 | MR | Zbl

[12] V. I. Kolyada, “Otsenki perestanovok i teoremy vlozheniya”, Matem. sb., 136:1 (1988), 3–23 | MR | Zbl

[13] B. Muckenhoupt, “Hardy's inequalities with weights”, Studia Math., 44 (1972), 31–38 | MR | Zbl

[14] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy Inequality. About Its History and Some Related Results, Vydavatelský Servis, Pilsen, 2007 | MR | Zbl