Fuglede--Putnam Theorem in Algebras with Involutions
Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 483-497.

Voir la notice de l'article provenant de la source Math-Net.Ru

The validity of the analogs of the Fuglede–Putnam theorem in the algebra $(\mathcal B(H),\star)$ of bounded operators acting on a Hilbert space $H$ with an arbitrary involution $\star$ is considered, together with the same problem in certain $*$-subalgebras of these algebras and in related constructions. The results obtained in this way are used to solve stability problems for “Fuglede” classes with respect to extensions and to the operation of tensor products.
Keywords: Fuglede–Putnam theorem, algebra of bounded operators on a Hilbert space, tensor products of classes of operators.
@article{MZM_2015_98_4_a0,
     author = {M. V. Ahramovich and M. A. Muratov and V. S. Shulman},
     title = {Fuglede--Putnam {Theorem} in {Algebras} with {Involutions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--497},
     publisher = {mathdoc},
     volume = {98},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a0/}
}
TY  - JOUR
AU  - M. V. Ahramovich
AU  - M. A. Muratov
AU  - V. S. Shulman
TI  - Fuglede--Putnam Theorem in Algebras with Involutions
JO  - Matematičeskie zametki
PY  - 2015
SP  - 483
EP  - 497
VL  - 98
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a0/
LA  - ru
ID  - MZM_2015_98_4_a0
ER  - 
%0 Journal Article
%A M. V. Ahramovich
%A M. A. Muratov
%A V. S. Shulman
%T Fuglede--Putnam Theorem in Algebras with Involutions
%J Matematičeskie zametki
%D 2015
%P 483-497
%V 98
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a0/
%G ru
%F MZM_2015_98_4_a0
M. V. Ahramovich; M. A. Muratov; V. S. Shulman. Fuglede--Putnam Theorem in Algebras with Involutions. Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 483-497. http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a0/

[1] B. Fuglede, “A commutativity theorem for normal operators”, Proc. Nat. Acad. Sci. USA, 36 (1950), 35–40 | DOI | MR | Zbl

[2] C. R. Putnam, “On normal operators in Hilbert space”, Amer. J. Math., 73 (1951), 357–362 | DOI | MR | Zbl

[3] S. K. Berberian, “Note on a theorem of Fuglede and Putnam”, Proc. Amer. Math. Soc., 10 (1959), 175–182 | DOI | MR | Zbl

[4] M. V. Akhramovich, M. A. Muratov, V. I. Chilin, “Teorema Fuglida–Putnama dlya lokalno izmerimykh operatorov”, Dinamicheskie sistemy, 4(32):1-2 (2014), 3–8

[5] G. Weiss, “The Fuglede commutativity theorem modulo the Hilbert–Schmidt class and generating functions for matrix operators. I”, Trans. Amer. Math. Soc., 246 (1978), 193–209 | MR | Zbl

[6] V. Shulman, “Some remarks on the Fuglede–Weiss theorem”, Bull. London Math. Soc., 28:4 (1996), 385–392 | DOI | MR | Zbl

[7] V. Shulman, L. Turowska, “Operator synthesis. II. Individual synthesis and linear operator equations”, J. Reine Angew Math., 590 (2006), 143–187 | MR | Zbl

[8] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl

[9] R. S. Ismagilov, “O neprivodimosti predstavlenii grupp izmerimykh tokov”, Funkts. analiz i ego pril., 28:2 (1994), 21–30 | MR | Zbl

[10] M. A. Naimark, “O perestanovochnykh unitarnykh operatorakh v prostranstve $\Pi_k$”, Dokl. AN SSSR, 149 (1963), 1261–1263 | MR | Zbl

[11] L. S. Pontryagin, “Ermitovy operatory v prostranstve s indefinitnoi metrikoi”, Izv. AN SSSR. Ser. matem., 8:6 (1944), 243–280 | MR | Zbl

[12] M. G. Krein, “Ob odnom primenenii printsipa nepodvizhnoi tochki v teorii lineinykh preobrazovanii prostranstv s indefinitnoi metrikoi”, UMN, 5:2(36) (1950), 180–190 | MR | Zbl

[13] V. Lomonosov, “On stability of non-negative invariant subspaces”, New Results in Operator Theory and its Applications, Oper. Theory Adv. Appl., 98, Birkhäuser Verlag, Basel, 1997, 186–189 | MR | Zbl

[14] M. A. Naimark, “Usloviya unitarnoi ekvivalentnosti kommutativnykh simmetrichnykh algebr v prostranstve Pontryagina $\Pi_k$”, Tr. MMO, 15, Izd-vo Mosk. un-ta, M., 1966, 383–399 | MR | Zbl

[15] R. S. Ismagilov, “O koltsakh operatorov v prostranstve s indefinitnoi metrikoi”, Dokl. AN SSSR, 171 (1966), 269–271 | MR | Zbl

[16] A. I. Loginov, V. S. Shulman, “Neprivodimye $J$-simmetrichnye algebry operatorov v prostranstvakh s indefinitnoi metrikoi”, Dokl. AN SSSR, 248 (1978), 21–23 | MR | Zbl

[17] E. Kissin, A. I. Loginov, V. S. Shulman, “Derivations of $C^*$-algebras and almost Hermitian representations on $\Pi_k$-spaces”, Pacific J. Math., 174:2 (1996), 411–430 | DOI | MR | Zbl

[18] V. S. Shulman, “Banakhovy simmetrichnye algebry operatorov v prostranstve tipa $\Pi_1$”, Matem. sb., 89:2 (1972), 264–279 | MR | Zbl

[19] E. Kissin, V. S. Shulman, Representations on Krein Spaces and Unbounded Derivations of $C^*$-Algebras, Pitman Monogr. Surveys Pure Appl. Math., 89, Longman, Harlow, 1997 | MR | Zbl