Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_98_4_a0, author = {M. V. Ahramovich and M. A. Muratov and V. S. Shulman}, title = {Fuglede--Putnam {Theorem} in {Algebras} with {Involutions}}, journal = {Matemati\v{c}eskie zametki}, pages = {483--497}, publisher = {mathdoc}, volume = {98}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a0/} }
TY - JOUR AU - M. V. Ahramovich AU - M. A. Muratov AU - V. S. Shulman TI - Fuglede--Putnam Theorem in Algebras with Involutions JO - Matematičeskie zametki PY - 2015 SP - 483 EP - 497 VL - 98 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a0/ LA - ru ID - MZM_2015_98_4_a0 ER -
M. V. Ahramovich; M. A. Muratov; V. S. Shulman. Fuglede--Putnam Theorem in Algebras with Involutions. Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 483-497. http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a0/
[1] B. Fuglede, “A commutativity theorem for normal operators”, Proc. Nat. Acad. Sci. USA, 36 (1950), 35–40 | DOI | MR | Zbl
[2] C. R. Putnam, “On normal operators in Hilbert space”, Amer. J. Math., 73 (1951), 357–362 | DOI | MR | Zbl
[3] S. K. Berberian, “Note on a theorem of Fuglede and Putnam”, Proc. Amer. Math. Soc., 10 (1959), 175–182 | DOI | MR | Zbl
[4] M. V. Akhramovich, M. A. Muratov, V. I. Chilin, “Teorema Fuglida–Putnama dlya lokalno izmerimykh operatorov”, Dinamicheskie sistemy, 4(32):1-2 (2014), 3–8
[5] G. Weiss, “The Fuglede commutativity theorem modulo the Hilbert–Schmidt class and generating functions for matrix operators. I”, Trans. Amer. Math. Soc., 246 (1978), 193–209 | MR | Zbl
[6] V. Shulman, “Some remarks on the Fuglede–Weiss theorem”, Bull. London Math. Soc., 28:4 (1996), 385–392 | DOI | MR | Zbl
[7] V. Shulman, L. Turowska, “Operator synthesis. II. Individual synthesis and linear operator equations”, J. Reine Angew Math., 590 (2006), 143–187 | MR | Zbl
[8] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl
[9] R. S. Ismagilov, “O neprivodimosti predstavlenii grupp izmerimykh tokov”, Funkts. analiz i ego pril., 28:2 (1994), 21–30 | MR | Zbl
[10] M. A. Naimark, “O perestanovochnykh unitarnykh operatorakh v prostranstve $\Pi_k$”, Dokl. AN SSSR, 149 (1963), 1261–1263 | MR | Zbl
[11] L. S. Pontryagin, “Ermitovy operatory v prostranstve s indefinitnoi metrikoi”, Izv. AN SSSR. Ser. matem., 8:6 (1944), 243–280 | MR | Zbl
[12] M. G. Krein, “Ob odnom primenenii printsipa nepodvizhnoi tochki v teorii lineinykh preobrazovanii prostranstv s indefinitnoi metrikoi”, UMN, 5:2(36) (1950), 180–190 | MR | Zbl
[13] V. Lomonosov, “On stability of non-negative invariant subspaces”, New Results in Operator Theory and its Applications, Oper. Theory Adv. Appl., 98, Birkhäuser Verlag, Basel, 1997, 186–189 | MR | Zbl
[14] M. A. Naimark, “Usloviya unitarnoi ekvivalentnosti kommutativnykh simmetrichnykh algebr v prostranstve Pontryagina $\Pi_k$”, Tr. MMO, 15, Izd-vo Mosk. un-ta, M., 1966, 383–399 | MR | Zbl
[15] R. S. Ismagilov, “O koltsakh operatorov v prostranstve s indefinitnoi metrikoi”, Dokl. AN SSSR, 171 (1966), 269–271 | MR | Zbl
[16] A. I. Loginov, V. S. Shulman, “Neprivodimye $J$-simmetrichnye algebry operatorov v prostranstvakh s indefinitnoi metrikoi”, Dokl. AN SSSR, 248 (1978), 21–23 | MR | Zbl
[17] E. Kissin, A. I. Loginov, V. S. Shulman, “Derivations of $C^*$-algebras and almost Hermitian representations on $\Pi_k$-spaces”, Pacific J. Math., 174:2 (1996), 411–430 | DOI | MR | Zbl
[18] V. S. Shulman, “Banakhovy simmetrichnye algebry operatorov v prostranstve tipa $\Pi_1$”, Matem. sb., 89:2 (1972), 264–279 | MR | Zbl
[19] E. Kissin, V. S. Shulman, Representations on Krein Spaces and Unbounded Derivations of $C^*$-Algebras, Pitman Monogr. Surveys Pure Appl. Math., 89, Longman, Harlow, 1997 | MR | Zbl