On the Local Existence of Solutions of Equations with Memory not Solvable with Respect to the Time Derivative
Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 414-426 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, on the basis of the theory of degenerate semigroups of operators and the contraction mapping theorem, we prove the local unique solvability of initial problems for a class of first-order linear differential operator equations with memory and with degenerate operator multiplying the derivative. The resulting abstract results are used to study initial boundary-value problems for partial integro-differential equations not solvable with respect to the time derivative.
Keywords: first-order linear differential operator equation with memory, degenerate semigroup of operators, partial integro-differential equation, contraction mapping theorem, $(L,p)$-radial operator, Banach space.
Mots-clés : pseudoparabolic equation
@article{MZM_2015_98_3_a9,
     author = {V. E. Fedorov and O. A. Stakheeva},
     title = {On the {Local} {Existence} of {Solutions} of {Equations} with {Memory} not {Solvable} with {Respect} to the {Time} {Derivative}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {414--426},
     year = {2015},
     volume = {98},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a9/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - O. A. Stakheeva
TI  - On the Local Existence of Solutions of Equations with Memory not Solvable with Respect to the Time Derivative
JO  - Matematičeskie zametki
PY  - 2015
SP  - 414
EP  - 426
VL  - 98
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a9/
LA  - ru
ID  - MZM_2015_98_3_a9
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A O. A. Stakheeva
%T On the Local Existence of Solutions of Equations with Memory not Solvable with Respect to the Time Derivative
%J Matematičeskie zametki
%D 2015
%P 414-426
%V 98
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a9/
%G ru
%F MZM_2015_98_3_a9
V. E. Fedorov; O. A. Stakheeva. On the Local Existence of Solutions of Equations with Memory not Solvable with Respect to the Time Derivative. Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 414-426. http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a9/

[1] M. Grasselli, V. Pata, “Uniform attractors of nonautonomous dynamical systems with memory”, Evolution Equations, Semigroups and Functional Analysis, Progr. Nonlinear Differential Equations Appl., 50, Birkhäuser Verlag, Basel, 2002, 155—178 | MR | Zbl

[2] M. Grasselli, M. Squassina, “Exponential stability and singular limit for a linear thermoelastic plate with memory effects”, Adv. Math. Sci. Appl., 16:1 (2006), 15–31 | MR | Zbl

[3] P. I. Plotnikov, V. N. Starovoitov, “Zadacha Stefana s poverkhnostnym natyazheniem kak predel modeli fazovogo polya”, Differents. uravneniya, 29:3 (1993), 461–471 | MR | Zbl

[4] P. I. Plotnikov, A. V. Klepacheva, “Uravneniya fazovogo polya i gradientnye potoki marginalnykh funktsii”, Sib. matem. zhurn., 42:3 (2001), 651–669 | MR | Zbl

[5] S. Gatti, M. Grasselli, V. Pata, M. Squassina, “Robust exponential attractors for a family of nonconserved phase-field systems with memory”, Discrete Contin. Dyn. Syst., 12:5 (2005), 1019–1029 | DOI | MR | Zbl

[6] A. G. Rutkas, “Zadacha Koshi dlya uravneniya $Ax'(t)+Bx(t)=f(t)$”, Differents. uravneniya, 11:11 (1975), 1996–2010 | MR | Zbl

[7] L. A. Vlasenko, Evolyutsionnye modeli s neyavnymi i vyrozhdennymi differentsialnymi uravneniyami, Sistemnye tekhnologii, Dnepropetrovsk, 2006

[8] V. E. Fedorov, O. A. Stakheeva, “O lokalnoi razreshimosti lineinykh evolyutsionnykh uravnenii s pamyatyu”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2:27 (2008), 104–109

[9] O. A. Stakheeva, “Lokalnaya razreshimost odnogo klassa lineinykh uravnenii s pamyatyu”, Vestn. Chelyabins. gos. un-ta. Ser. Matem. Mekh. Inform., 11:20 (2009), 70–76 | Zbl

[10] V. E. Fedorov, “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 12:3 (2000), 173–200 | MR | Zbl

[11] V. E. Fedorov, “Obobschenie teoremy Khille–Iosidy na sluchai vyrozhdennykh polugrupp v lokalno vypuklykh prostranstvakh”, Sib. matem. zhurn., 46:2 (2005), 426–448 | MR | Zbl

[12] E. S. Dzektser, “Obobschenie uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, Dokl. AN SSSR, 202:5 (1972), 1031–1033 | Zbl

[13] V. E. Fedorov, “Svoistva psevdorezolvent i usloviya suschestvovaniya vyrozhdennykh polugrupp operatorov”, Vestn. Chelyabins. gos. un-ta. Ser. Matem. Mekh. Inform., 11:20 (2009), 12–19 | MR | Zbl

[14] R. Showalter, “Partial differential equations of Sobolev–Galperin type”, Pacific J. Math., 31:3 (1969), 787–793 | DOI | MR | Zbl

[15] V. E. Fedorov, O. A. Ruzakova, “O razreshimosti vozmuschennykh uravnenii sobolevskogo tipa”, Algebra i analiz, 20:4 (2008), 189–217 | MR | Zbl

[16] V. E. Fedorov, A. V. Urazaeva, “Obratnaya zadacha dlya odnogo klassa singulyarnykh lineinykh operatorno-differentsialnykh uravnenii”, Tr. Voronezhsk. zimn. matem. shkoly, VGU, Voronezh, 2004, 161–172