On the Local Existence of Solutions of Equations with Memory not Solvable with Respect to the Time Derivative
Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 414-426.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, on the basis of the theory of degenerate semigroups of operators and the contraction mapping theorem, we prove the local unique solvability of initial problems for a class of first-order linear differential operator equations with memory and with degenerate operator multiplying the derivative. The resulting abstract results are used to study initial boundary-value problems for partial integro-differential equations not solvable with respect to the time derivative.
Keywords: first-order linear differential operator equation with memory, degenerate semigroup of operators, partial integro-differential equation, contraction mapping theorem, $(L,p)$-radial operator, Banach space.
Mots-clés : pseudoparabolic equation
@article{MZM_2015_98_3_a9,
     author = {V. E. Fedorov and O. A. Stakheeva},
     title = {On the {Local} {Existence} of {Solutions} of {Equations} with {Memory} not {Solvable} with {Respect} to the {Time} {Derivative}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {414--426},
     publisher = {mathdoc},
     volume = {98},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a9/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - O. A. Stakheeva
TI  - On the Local Existence of Solutions of Equations with Memory not Solvable with Respect to the Time Derivative
JO  - Matematičeskie zametki
PY  - 2015
SP  - 414
EP  - 426
VL  - 98
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a9/
LA  - ru
ID  - MZM_2015_98_3_a9
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A O. A. Stakheeva
%T On the Local Existence of Solutions of Equations with Memory not Solvable with Respect to the Time Derivative
%J Matematičeskie zametki
%D 2015
%P 414-426
%V 98
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a9/
%G ru
%F MZM_2015_98_3_a9
V. E. Fedorov; O. A. Stakheeva. On the Local Existence of Solutions of Equations with Memory not Solvable with Respect to the Time Derivative. Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 414-426. http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a9/

[1] M. Grasselli, V. Pata, “Uniform attractors of nonautonomous dynamical systems with memory”, Evolution Equations, Semigroups and Functional Analysis, Progr. Nonlinear Differential Equations Appl., 50, Birkhäuser Verlag, Basel, 2002, 155—178 | MR | Zbl

[2] M. Grasselli, M. Squassina, “Exponential stability and singular limit for a linear thermoelastic plate with memory effects”, Adv. Math. Sci. Appl., 16:1 (2006), 15–31 | MR | Zbl

[3] P. I. Plotnikov, V. N. Starovoitov, “Zadacha Stefana s poverkhnostnym natyazheniem kak predel modeli fazovogo polya”, Differents. uravneniya, 29:3 (1993), 461–471 | MR | Zbl

[4] P. I. Plotnikov, A. V. Klepacheva, “Uravneniya fazovogo polya i gradientnye potoki marginalnykh funktsii”, Sib. matem. zhurn., 42:3 (2001), 651–669 | MR | Zbl

[5] S. Gatti, M. Grasselli, V. Pata, M. Squassina, “Robust exponential attractors for a family of nonconserved phase-field systems with memory”, Discrete Contin. Dyn. Syst., 12:5 (2005), 1019–1029 | DOI | MR | Zbl

[6] A. G. Rutkas, “Zadacha Koshi dlya uravneniya $Ax'(t)+Bx(t)=f(t)$”, Differents. uravneniya, 11:11 (1975), 1996–2010 | MR | Zbl

[7] L. A. Vlasenko, Evolyutsionnye modeli s neyavnymi i vyrozhdennymi differentsialnymi uravneniyami, Sistemnye tekhnologii, Dnepropetrovsk, 2006

[8] V. E. Fedorov, O. A. Stakheeva, “O lokalnoi razreshimosti lineinykh evolyutsionnykh uravnenii s pamyatyu”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2:27 (2008), 104–109

[9] O. A. Stakheeva, “Lokalnaya razreshimost odnogo klassa lineinykh uravnenii s pamyatyu”, Vestn. Chelyabins. gos. un-ta. Ser. Matem. Mekh. Inform., 11:20 (2009), 70–76 | Zbl

[10] V. E. Fedorov, “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 12:3 (2000), 173–200 | MR | Zbl

[11] V. E. Fedorov, “Obobschenie teoremy Khille–Iosidy na sluchai vyrozhdennykh polugrupp v lokalno vypuklykh prostranstvakh”, Sib. matem. zhurn., 46:2 (2005), 426–448 | MR | Zbl

[12] E. S. Dzektser, “Obobschenie uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, Dokl. AN SSSR, 202:5 (1972), 1031–1033 | Zbl

[13] V. E. Fedorov, “Svoistva psevdorezolvent i usloviya suschestvovaniya vyrozhdennykh polugrupp operatorov”, Vestn. Chelyabins. gos. un-ta. Ser. Matem. Mekh. Inform., 11:20 (2009), 12–19 | MR | Zbl

[14] R. Showalter, “Partial differential equations of Sobolev–Galperin type”, Pacific J. Math., 31:3 (1969), 787–793 | DOI | MR | Zbl

[15] V. E. Fedorov, O. A. Ruzakova, “O razreshimosti vozmuschennykh uravnenii sobolevskogo tipa”, Algebra i analiz, 20:4 (2008), 189–217 | MR | Zbl

[16] V. E. Fedorov, A. V. Urazaeva, “Obratnaya zadacha dlya odnogo klassa singulyarnykh lineinykh operatorno-differentsialnykh uravnenii”, Tr. Voronezhsk. zimn. matem. shkoly, VGU, Voronezh, 2004, 161–172