Finding Roots of Nonlinear Equations Using the Method of Concave Support Functions
Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 427-435.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for finding roots of nonlinear equations on a closed interval generalizing Newton's method is proposed. The class of functions for which the proposed method is convergent, is determined. The rate of convergence is estimated and results of a numerical simulation are given.
Keywords: nonlinear equation, Newton's method for finding roots, concave support function, Lipschitz condition.
@article{MZM_2015_98_3_a10,
     author = {O. V. Khamisov},
     title = {Finding {Roots} of {Nonlinear} {Equations} {Using} the {Method} of {Concave} {Support} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {427--435},
     publisher = {mathdoc},
     volume = {98},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a10/}
}
TY  - JOUR
AU  - O. V. Khamisov
TI  - Finding Roots of Nonlinear Equations Using the Method of Concave Support Functions
JO  - Matematičeskie zametki
PY  - 2015
SP  - 427
EP  - 435
VL  - 98
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a10/
LA  - ru
ID  - MZM_2015_98_3_a10
ER  - 
%0 Journal Article
%A O. V. Khamisov
%T Finding Roots of Nonlinear Equations Using the Method of Concave Support Functions
%J Matematičeskie zametki
%D 2015
%P 427-435
%V 98
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a10/
%G ru
%F MZM_2015_98_3_a10
O. V. Khamisov. Finding Roots of Nonlinear Equations Using the Method of Concave Support Functions. Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 427-435. http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a10/

[1] O. V. Khamisov, “Nakhozhdenie veschestvennykh kornei polinoma na otrezke metodom opornykh vognutykh funktsii”, Optimizatsiya, Upravlenie, Intellekt, 3, IDSTU, Irkutsk, 1999, 167–177

[2] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978 | MR

[3] G. P. Kutischev, Reshenie algebraicheskikh uravnenii proizvolnoi stepeni, Izd-vo LKI, M., 2010

[4] A. V. Khlyamkov, “Zamechanie o skhodimosti metoda parabol”, Matem. zametki, 63:2 (1998), 309 | DOI | MR | Zbl

[5] Ya. D. Sergeev, D. E. Kvasov, Diagonalnye metody globalnoi optimizatsii, FIZMATLIT, M., 2008

[6] A. Molinaro, Y. D. Sergeev, “Finding the minimal root of an equation with the multiextremal and nondifferentiable left-hand part”, Numer. Algorithms, 28:1-4 (2001), 255–272 | DOI | MR | Zbl

[7] O. V. Khamisov, “Globalnaya optimizatsiya funktsii s vognutoi opornoi minorantoi”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1552–1563 | MR | Zbl

[8] V. G. Karmanov, Matematicheskoe programmirovanie, Fizmatlit, M., 2000

[9] R. Horst, H. Tuy, Global Optimization. Deterministic Approaches, Springer-Verlag, Berlin, 1996 | MR | Zbl

[10] Dzh. Dennis, ml., R. Shnabel, Chislennye metody bezuslovnoi optimizatsii i resheniya nelineinykh uravnenii, Mir, M., 1988 | MR | Zbl