Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_98_3_a10, author = {O. V. Khamisov}, title = {Finding {Roots} of {Nonlinear} {Equations} {Using} the {Method} of {Concave} {Support} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {427--435}, publisher = {mathdoc}, volume = {98}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a10/} }
O. V. Khamisov. Finding Roots of Nonlinear Equations Using the Method of Concave Support Functions. Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 427-435. http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a10/
[1] O. V. Khamisov, “Nakhozhdenie veschestvennykh kornei polinoma na otrezke metodom opornykh vognutykh funktsii”, Optimizatsiya, Upravlenie, Intellekt, 3, IDSTU, Irkutsk, 1999, 167–177
[2] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978 | MR
[3] G. P. Kutischev, Reshenie algebraicheskikh uravnenii proizvolnoi stepeni, Izd-vo LKI, M., 2010
[4] A. V. Khlyamkov, “Zamechanie o skhodimosti metoda parabol”, Matem. zametki, 63:2 (1998), 309 | DOI | MR | Zbl
[5] Ya. D. Sergeev, D. E. Kvasov, Diagonalnye metody globalnoi optimizatsii, FIZMATLIT, M., 2008
[6] A. Molinaro, Y. D. Sergeev, “Finding the minimal root of an equation with the multiextremal and nondifferentiable left-hand part”, Numer. Algorithms, 28:1-4 (2001), 255–272 | DOI | MR | Zbl
[7] O. V. Khamisov, “Globalnaya optimizatsiya funktsii s vognutoi opornoi minorantoi”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1552–1563 | MR | Zbl
[8] V. G. Karmanov, Matematicheskoe programmirovanie, Fizmatlit, M., 2000
[9] R. Horst, H. Tuy, Global Optimization. Deterministic Approaches, Springer-Verlag, Berlin, 1996 | MR | Zbl
[10] Dzh. Dennis, ml., R. Shnabel, Chislennye metody bezuslovnoi optimizatsii i resheniya nelineinykh uravnenii, Mir, M., 1988 | MR | Zbl