Concerning the Theory of $\tau$-Measurable Operators Affiliated to a Semifinite von~Neumann Algebra
Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 337-348.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathscr M$ be a von Neumann algebra of operators in a Hilbert space $\mathscr H$, let $\tau$ be an exact normal semifinite trace on $\mathscr M$, and let $L_1(\mathscr M,\tau)$ be the Banach space of $\tau$-integrable operators. The following results are obtained. If $X=X^*$, $Y=Y^*$ are $\tau$-measurable operators and $XY\in L_1(\mathscr M,\tau)$, then $YX\in L_1(\mathscr M,\tau)$ and $\tau(XY)=\tau(YX)\in\mathbb R$. In particular, if $X,Y\in\mathscr B(\mathscr H)^{\mathrm{sa}}$ and $XY\in\mathfrak S_1$, then $YX\in \mathfrak S_1$ and $\operatorname{tr}(XY) =\operatorname{tr}(YX)\in\mathbb R$. If $X\in L_1(\mathscr M,\tau)$, then $\tau(X^*)=\overline{\tau(X)}$. Let $A$ be a $\tau$-measurable operator. If the operator $A$ is $\tau$-compact and $V\in\mathscr M$ is a contraction, then it follows from $V^*AV=A$ that $VA=AV$. We have $A=A^2$ if and only if $A=|A^*||A|$. This representation is also new for bounded idempotents in $\mathscr H$. If $A=A^2\in L_1(\mathscr M,\tau)$, then $\tau(A)=\tau(\sqrt{|A|}\mspace{2mu}|A^*|\sqrt{|A|}\mspace{2mu}) \in\mathbb R^+$. If $A=A^2$ and $A$ (or $A^*$) is semihyponormal, then $A$ is normal, thus $A$ is a projection. If $A=A^3$ and $A$ is hyponormal or cohyponormal, then $A$ is normal, and thus $A=A^*\in\mathscr M$ is the difference of two mutually orthogonal projections $(A+A^2)/2$ and $(A^2-A)/2$. If $A,A^2\in L_1(\mathscr M,\tau)$ and $A=A^3$, then $\tau(A)\in\mathbb R$.
Keywords: von Neumann algebra, $\tau$-measurable operator, $\tau$-compact operator, Banach space of $\tau$-integrable operators, Hilbert space, idempotent, hyponormal operator, semihyponormal operator, cohyponormal operator.
@article{MZM_2015_98_3_a1,
     author = {A. M. Bikchentaev},
     title = {Concerning the {Theory} of $\tau${-Measurable} {Operators} {Affiliated} to a {Semifinite} {von~Neumann} {Algebra}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {337--348},
     publisher = {mathdoc},
     volume = {98},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a1/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Concerning the Theory of $\tau$-Measurable Operators Affiliated to a Semifinite von~Neumann Algebra
JO  - Matematičeskie zametki
PY  - 2015
SP  - 337
EP  - 348
VL  - 98
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a1/
LA  - ru
ID  - MZM_2015_98_3_a1
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Concerning the Theory of $\tau$-Measurable Operators Affiliated to a Semifinite von~Neumann Algebra
%J Matematičeskie zametki
%D 2015
%P 337-348
%V 98
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a1/
%G ru
%F MZM_2015_98_3_a1
A. M. Bikchentaev. Concerning the Theory of $\tau$-Measurable Operators Affiliated to a Semifinite von~Neumann Algebra. Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 337-348. http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a1/

[1] I. E. Segal, “A non-commutative extension of abstract integration”, Ann. of Math. (2), 57:3 (1953), 401–457 ; Математика. Cб. переводов, 6:1 (1962), 65–132 | DOI | MR | Zbl

[2] E. Nelson, “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl

[3] F. J. Yeadon, “Non-commutative $L^p$-spaces”, Math. Proc. Cambridge Philos. Soc., 77:1 (1975), 91–102 | DOI | MR | Zbl

[4] A. M. Bikchentaev, “Ob odnom svoistve $L_p$-prostranstv na polukonechnykh algebrakh fon Neimana”, Matem. zametki, 64:2 (1998), 185–190 | DOI | MR | Zbl

[5] A. M. Bikchentaev, “Majorization for products of measurable operators”, Internat. J. Theoret. Phys., 37:1 (1998), 571–576 | DOI | MR | Zbl

[6] T. Fack, H. Kosaki, “Generalized $s$-numbers of $\tau$-measurable operators”, Pacific J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl

[7] A. M. Bikchentaev, “On noncommutative function spaces”, Selected Papers in $K$-theory, Amer. Math. Soc. Transl. (2), 154, 1992, 179–187 | MR | Zbl

[8] P. G. Dodds, T. K.-Y. Dodds, B. de Pagter, “Noncommutative Köthe duality”, Trans. Amer. Math. Soc., 339:2 (1993), 717–750 | MR | Zbl

[9] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl

[10] L. G. Brown, H. Kosaki, “Jensen's inequality in semifinite von Neumann algebras”, J. Operator Theory, 23:1 (1990), 3–19 | MR | Zbl

[11] V. I. Chilin, A. V. Krygin, F. A. Sukochev, “Extreme points of convex fully symmetric sets of measurable operators”, Integral Equations Operator Theory, 15:2 (1992), 186–226 | DOI | MR | Zbl

[12] H. Kosaki, “On the continuity of the map $\varphi\mapsto|\varphi|$ from the predual of a $W^*$-algebra”, J. Funct. Anal., 59:1 (1984), 123–131 | DOI | MR | Zbl

[13] A. M. Bikchentaev, “Operator blochnogo proektirovaniya v normirovannykh idealnykh prostranstvakh izmerimykh operatorov”, Izv. vuzov. Matem., 2012, no. 2, 86–91 | MR | Zbl

[14] J. J. Koliha, “Range projections of idempotents in $C^*$-algebras”, Demonstratio Math., 34:1 (2001), 91–103 | MR | Zbl

[15] G. J. Murphy, $C^*$-algebras and operator theory, Academic Press, Boston, MA, 1990 ; Дж. Мерфи, $C^*$-алгебры и теория операторов, Факториал, М., 1997 | MR

[16] A. M. Bikchentaev, “Lokalnaya skhodimost po mere na polukonechnykh algebrakh fon Neimana”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Sbornik statei, Tr. MIAN, 255, Nauka, M., 2006, 41–54 | MR | Zbl

[17] A. M. Bikchentaev, “O normalnykh $\tau$-izmerimykh operatorakh, prisoedinennykh k polukonechnoi algebre fon Neimana”, Matem. zametki, 96:3 (2014), 350–360 | DOI | Zbl

[18] A. M. Bikchentaev, R. S. Yakushev, “Representation of tripotents and representations via tripotents”, Linear Algebra Appl., 435:9 (2011), 2156–2165 | DOI | MR | Zbl

[19] A. M. Bikchentaev, “Tripotents in algebras: invertibility and hyponormality”, Lobachevskii J. Math., 35:3 (2014), 281–285 | DOI | MR | Zbl

[20] H. A. Dye, “On the ergodic mixing theorem”, Trans. Amer. Math. Soc., 118 (1965), 123–130 | DOI | MR | Zbl