Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_98_3_a1, author = {A. M. Bikchentaev}, title = {Concerning the {Theory} of $\tau${-Measurable} {Operators} {Affiliated} to a {Semifinite} {von~Neumann} {Algebra}}, journal = {Matemati\v{c}eskie zametki}, pages = {337--348}, publisher = {mathdoc}, volume = {98}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a1/} }
TY - JOUR AU - A. M. Bikchentaev TI - Concerning the Theory of $\tau$-Measurable Operators Affiliated to a Semifinite von~Neumann Algebra JO - Matematičeskie zametki PY - 2015 SP - 337 EP - 348 VL - 98 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a1/ LA - ru ID - MZM_2015_98_3_a1 ER -
A. M. Bikchentaev. Concerning the Theory of $\tau$-Measurable Operators Affiliated to a Semifinite von~Neumann Algebra. Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 337-348. http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a1/
[1] I. E. Segal, “A non-commutative extension of abstract integration”, Ann. of Math. (2), 57:3 (1953), 401–457 ; Математика. Cб. переводов, 6:1 (1962), 65–132 | DOI | MR | Zbl
[2] E. Nelson, “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl
[3] F. J. Yeadon, “Non-commutative $L^p$-spaces”, Math. Proc. Cambridge Philos. Soc., 77:1 (1975), 91–102 | DOI | MR | Zbl
[4] A. M. Bikchentaev, “Ob odnom svoistve $L_p$-prostranstv na polukonechnykh algebrakh fon Neimana”, Matem. zametki, 64:2 (1998), 185–190 | DOI | MR | Zbl
[5] A. M. Bikchentaev, “Majorization for products of measurable operators”, Internat. J. Theoret. Phys., 37:1 (1998), 571–576 | DOI | MR | Zbl
[6] T. Fack, H. Kosaki, “Generalized $s$-numbers of $\tau$-measurable operators”, Pacific J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl
[7] A. M. Bikchentaev, “On noncommutative function spaces”, Selected Papers in $K$-theory, Amer. Math. Soc. Transl. (2), 154, 1992, 179–187 | MR | Zbl
[8] P. G. Dodds, T. K.-Y. Dodds, B. de Pagter, “Noncommutative Köthe duality”, Trans. Amer. Math. Soc., 339:2 (1993), 717–750 | MR | Zbl
[9] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl
[10] L. G. Brown, H. Kosaki, “Jensen's inequality in semifinite von Neumann algebras”, J. Operator Theory, 23:1 (1990), 3–19 | MR | Zbl
[11] V. I. Chilin, A. V. Krygin, F. A. Sukochev, “Extreme points of convex fully symmetric sets of measurable operators”, Integral Equations Operator Theory, 15:2 (1992), 186–226 | DOI | MR | Zbl
[12] H. Kosaki, “On the continuity of the map $\varphi\mapsto|\varphi|$ from the predual of a $W^*$-algebra”, J. Funct. Anal., 59:1 (1984), 123–131 | DOI | MR | Zbl
[13] A. M. Bikchentaev, “Operator blochnogo proektirovaniya v normirovannykh idealnykh prostranstvakh izmerimykh operatorov”, Izv. vuzov. Matem., 2012, no. 2, 86–91 | MR | Zbl
[14] J. J. Koliha, “Range projections of idempotents in $C^*$-algebras”, Demonstratio Math., 34:1 (2001), 91–103 | MR | Zbl
[15] G. J. Murphy, $C^*$-algebras and operator theory, Academic Press, Boston, MA, 1990 ; Дж. Мерфи, $C^*$-алгебры и теория операторов, Факториал, М., 1997 | MR
[16] A. M. Bikchentaev, “Lokalnaya skhodimost po mere na polukonechnykh algebrakh fon Neimana”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Sbornik statei, Tr. MIAN, 255, Nauka, M., 2006, 41–54 | MR | Zbl
[17] A. M. Bikchentaev, “O normalnykh $\tau$-izmerimykh operatorakh, prisoedinennykh k polukonechnoi algebre fon Neimana”, Matem. zametki, 96:3 (2014), 350–360 | DOI | Zbl
[18] A. M. Bikchentaev, R. S. Yakushev, “Representation of tripotents and representations via tripotents”, Linear Algebra Appl., 435:9 (2011), 2156–2165 | DOI | MR | Zbl
[19] A. M. Bikchentaev, “Tripotents in algebras: invertibility and hyponormality”, Lobachevskii J. Math., 35:3 (2014), 281–285 | DOI | MR | Zbl
[20] H. A. Dye, “On the ergodic mixing theorem”, Trans. Amer. Math. Soc., 118 (1965), 123–130 | DOI | MR | Zbl