Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_98_3_a0, author = {D. V. Artamonov and V. A. Golubeva}, title = {Central {Elements} of the {Universal} {Enveloping} {Algebra} and {Functions} of {Matrix} {Elements}}, journal = {Matemati\v{c}eskie zametki}, pages = {323--336}, publisher = {mathdoc}, volume = {98}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a0/} }
TY - JOUR AU - D. V. Artamonov AU - V. A. Golubeva TI - Central Elements of the Universal Enveloping Algebra and Functions of Matrix Elements JO - Matematičeskie zametki PY - 2015 SP - 323 EP - 336 VL - 98 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a0/ LA - ru ID - MZM_2015_98_3_a0 ER -
D. V. Artamonov; V. A. Golubeva. Central Elements of the Universal Enveloping Algebra and Functions of Matrix Elements. Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 323-336. http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a0/
[1] R. Howe, T. Umeda, “The Capelli identity, the double commutant theorem and multiplicity-free actions”, Math. Ann., 290:3 (1991), 565–619 | DOI | MR | Zbl
[2] M. Itoh, T. Umeda, “On Central Elements in the Universal Enveloping Algebras of the Orthogonal Lie Algebras”, Compositio Math., 127:3 (2001), 333–359 | DOI | MR | Zbl
[3] A. Molev, Yangians and Classical Lie Algebras, Math. Surveys Monogr., 143, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl
[4] I. M. Gelfand, “Tsentr infinitezimalnogo gruppovogo koltsa”, Matem. sb., 26:1 (1950), 103–112 | MR | Zbl
[5] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, MTsNMO, M., 2007
[6] D. V. Artamonov, V. A. Golubeva, “Capelli elements for the Lie algebra $\mathfrak{g}_2$”, J. Lie Theory, 23:2 (2013), 589–606 | MR | Zbl
[7] D. V. Artamonov, V. A. Golubeva, “Nekommutativnye pfaffiany, svyazannye s ortogonalnoi algebroi”, Matem. sb., 203:12 (2012), 5–34 | DOI | MR | Zbl
[8] G. Veil, Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, M., 1947 | MR | Zbl
[9] G. W. Schwarz, “Invariant theory of $G_2$”, Bull. Amer. Math. Soc. (N.S.), 9 (1983), 335–388 | DOI | MR | Zbl
[10] G. W. Schwarz, “Invariant theory of $G_2$ and $\operatorname{Spin}_7$”, Comment. Math. Helv., 63:4 (1988), 624–663 | DOI | MR | Zbl
[11] L. Frappat, A. Sciarrino, P. Sorba, Dictionary on the Lie algebras and Superalgebras, Academic Press, San Diego, CA, 2000 | MR | Zbl