Central Elements of the Universal Enveloping Algebra and Functions of Matrix Elements
Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 323-336.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct central elements in $U(\mathfrak{o}_N)$ and $U(\mathfrak{g}_2)$ by using the first main theorem of invariant theory. We also construct new functions of matrix elements; these functions naturally arise when describing the center of $U(\mathfrak{g}_2)$, just as Pfaffians arise when describing the center of $U(\mathfrak{o}_N)$.
Keywords: Lie algebra, enveloping algebra, center, invariant theory, Pfaffian.
@article{MZM_2015_98_3_a0,
     author = {D. V. Artamonov and V. A. Golubeva},
     title = {Central {Elements} of the {Universal} {Enveloping} {Algebra} and {Functions} of {Matrix} {Elements}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--336},
     publisher = {mathdoc},
     volume = {98},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a0/}
}
TY  - JOUR
AU  - D. V. Artamonov
AU  - V. A. Golubeva
TI  - Central Elements of the Universal Enveloping Algebra and Functions of Matrix Elements
JO  - Matematičeskie zametki
PY  - 2015
SP  - 323
EP  - 336
VL  - 98
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a0/
LA  - ru
ID  - MZM_2015_98_3_a0
ER  - 
%0 Journal Article
%A D. V. Artamonov
%A V. A. Golubeva
%T Central Elements of the Universal Enveloping Algebra and Functions of Matrix Elements
%J Matematičeskie zametki
%D 2015
%P 323-336
%V 98
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a0/
%G ru
%F MZM_2015_98_3_a0
D. V. Artamonov; V. A. Golubeva. Central Elements of the Universal Enveloping Algebra and Functions of Matrix Elements. Matematičeskie zametki, Tome 98 (2015) no. 3, pp. 323-336. http://geodesic.mathdoc.fr/item/MZM_2015_98_3_a0/

[1] R. Howe, T. Umeda, “The Capelli identity, the double commutant theorem and multiplicity-free actions”, Math. Ann., 290:3 (1991), 565–619 | DOI | MR | Zbl

[2] M. Itoh, T. Umeda, “On Central Elements in the Universal Enveloping Algebras of the Orthogonal Lie Algebras”, Compositio Math., 127:3 (2001), 333–359 | DOI | MR | Zbl

[3] A. Molev, Yangians and Classical Lie Algebras, Math. Surveys Monogr., 143, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl

[4] I. M. Gelfand, “Tsentr infinitezimalnogo gruppovogo koltsa”, Matem. sb., 26:1 (1950), 103–112 | MR | Zbl

[5] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, MTsNMO, M., 2007

[6] D. V. Artamonov, V. A. Golubeva, “Capelli elements for the Lie algebra $\mathfrak{g}_2$”, J. Lie Theory, 23:2 (2013), 589–606 | MR | Zbl

[7] D. V. Artamonov, V. A. Golubeva, “Nekommutativnye pfaffiany, svyazannye s ortogonalnoi algebroi”, Matem. sb., 203:12 (2012), 5–34 | DOI | MR | Zbl

[8] G. Veil, Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, M., 1947 | MR | Zbl

[9] G. W. Schwarz, “Invariant theory of $G_2$”, Bull. Amer. Math. Soc. (N.S.), 9 (1983), 335–388 | DOI | MR | Zbl

[10] G. W. Schwarz, “Invariant theory of $G_2$ and $\operatorname{Spin}_7$”, Comment. Math. Helv., 63:4 (1988), 624–663 | DOI | MR | Zbl

[11] L. Frappat, A. Sciarrino, P. Sorba, Dictionary on the Lie algebras and Superalgebras, Academic Press, San Diego, CA, 2000 | MR | Zbl