On Effective $\sigma$-Boundedness and $\sigma$-Compactness in Solovay's Model
Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 247-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two dichotomy theorems on the effective $\sigma$-boundedness and effective $\sigma$-compactness of ordinal definable point sets in Solovay's model are proved.
Keywords: Solovay's model, effective $\sigma$-boundedness, effective $\sigma$-compactness, descriptive set theory.
@article{MZM_2015_98_2_a9,
     author = {V. G. Kanovei and V. A. Lyubetskii},
     title = {On {Effective} $\sigma${-Boundedness} and $\sigma${-Compactness} in {Solovay's} {Model}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {247--257},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a9/}
}
TY  - JOUR
AU  - V. G. Kanovei
AU  - V. A. Lyubetskii
TI  - On Effective $\sigma$-Boundedness and $\sigma$-Compactness in Solovay's Model
JO  - Matematičeskie zametki
PY  - 2015
SP  - 247
EP  - 257
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a9/
LA  - ru
ID  - MZM_2015_98_2_a9
ER  - 
%0 Journal Article
%A V. G. Kanovei
%A V. A. Lyubetskii
%T On Effective $\sigma$-Boundedness and $\sigma$-Compactness in Solovay's Model
%J Matematičeskie zametki
%D 2015
%P 247-257
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a9/
%G ru
%F MZM_2015_98_2_a9
V. G. Kanovei; V. A. Lyubetskii. On Effective $\sigma$-Boundedness and $\sigma$-Compactness in Solovay's Model. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 247-257. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a9/

[1] V. G. Kanovei, V. A. Lyubetskii, “Ob effektivnoi kompaktnosti i sigma-kompaktnosti”, Matem. zametki, 91:6 (2012), 840–852 | DOI | MR | Zbl

[2] V. G. Kanovei, V. A. Lyubetskii, Sovremennaya teoriya mnozhestv: borelevskie i proektivnye mnozhestva, MTsNMO, M., 2010

[3] A. S. Kechris, “On a notion of smallness for subsets of the Baire space”, Trans. Amer. Math. Soc., 229 (1977), 191–207 | DOI | MR | Zbl

[4] A. Louveau, J. Saint Raymond, “Borel classes and closed games: Wadge-type and Hurewicz-type results”, Trans. Amer. Math. Soc., 304 (1987), 431–467 | DOI | MR | Zbl

[5] J. Saint Raymond, “Approximation des sous-ensembles analytiques par l'interior”, C. R. Acad. Sci. Paris Sér. A, 281 (1975), 85–87 | MR | Zbl

[6] W. Hurewicz, “Relativ perfekte Teile von Punktmengen und Mengen $(A)$”, Fundam. Math., 12 (1928), 78–109 | Zbl

[7] V. Kanovei, Borel Equivalence Relations. Structure and Classification, Univ. Lecture Ser., 44, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[8] Su Gao, Invariant Descriptive Set Theory, Pure Appl. Math. (Boca Raton), 293, CRC Press, Boca Raton, FL, 2009 | MR | Zbl

[9] V. Kanovei, M. Sabok, J. Zapletal, Canonical Ramsey Theory on Polish Spaces, Cambridge Tracts in Math., 202, Cambridge Univ. Press, Cambridge, 2013 | MR | Zbl

[10] V. Kanovei, V. Lyubetsky, “On effective $\sigma$-boundedness and $\sigma$-compactness”, MLQ Math. Log. Q., 59:3 (2013), 147–166 | DOI | MR | Zbl

[11] R. M. Solovay, “A model of set theory in which every set of reals is Lebesgue measurable”, Ann. of Math. (2), 92 (1970), 1–56 | DOI | MR | Zbl

[12] V. G. Kanovei, V. A. Lyubetskii, Sovremennaya teoriya mnozhestv: absolyutno nerazreshimye klassicheskie problemy, MTsNMO, M., 2013

[13] L. Harrington, “Long projective wellorderings”, Ann. Math. Logic, 12:1 (1977), 1–24 | DOI | MR | Zbl

[14] V. G. Kanovei, “O deskriptivnykh formakh schetnoi aksiomy vybora”, Issledovaniya po neklassicheskim logikam i teorii mnozhestv, Nauka, M., 1979, 3–136 | MR

[15] V. G. Kanovei, V. A. Lyubetskii, “O nekotorykh klassicheskikh problemakh deskriptivnoi teorii mnozhestv”, UMN, 58:5 (2003), 3–88 | DOI | MR | Zbl

[16] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math., 156, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[17] V. G. Kanovei, “Proektivnaya ierarkhiya Luzina: sovremennoe sostoyanie teorii”, Spravochnaya kniga po matematicheskoi logike. Chast II. Teoriya mnozhestv, Nauka, M., 1982, 273–364 | MR

[18] T. Iekh, Teoriya mnozhestv i metod forsinga, Mir, M., 1973 | MR

[19] V. Kanovei, “An Ulm-type classification theorem for equivalence relations in Solovay model”, J. Symbolic Logic, 62:4 (1997), 1333–1351 | DOI | MR | Zbl