Degrees of Irreducible Characters and Dimensions of Hadamard Algebras
Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 230-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of Hadamard decomposition of a semisimple associative finite-dimensional complex algebra generalizes the notion of classical Hadamard matrix corresponding to the case of commutative algebras. The algebras admitting a Hadamard decomposition are referred to as Hadamard algebras. We study the conjecture claiming that, if a Hadamard algebra is not simple and has an irreducible character of degree $m\ge 2$, then the dimension of the algebra is not less than $2m^2$. The validity of this conjecture is confirmed for the first two values $m=2$ and $m=4$ (here $m$ must be even). Moreover, we prove a result (which is weaker than the conjecture) in which $2m^2$ is replaced by $m^2+2m$.
Mots-clés : Hadamard decomposition, Hadamard algebra, Hadamard matrix
Keywords: irreducible character.
@article{MZM_2015_98_2_a7,
     author = {D. N. Ivanov},
     title = {Degrees of {Irreducible} {Characters} and {Dimensions} of {Hadamard} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {230--236},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a7/}
}
TY  - JOUR
AU  - D. N. Ivanov
TI  - Degrees of Irreducible Characters and Dimensions of Hadamard Algebras
JO  - Matematičeskie zametki
PY  - 2015
SP  - 230
EP  - 236
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a7/
LA  - ru
ID  - MZM_2015_98_2_a7
ER  - 
%0 Journal Article
%A D. N. Ivanov
%T Degrees of Irreducible Characters and Dimensions of Hadamard Algebras
%J Matematičeskie zametki
%D 2015
%P 230-236
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a7/
%G ru
%F MZM_2015_98_2_a7
D. N. Ivanov. Degrees of Irreducible Characters and Dimensions of Hadamard Algebras. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 230-236. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a7/

[1] M. Kholl, Kombinatorika, Mir, M., 1970 | MR | Zbl

[2] D. N. Ivanov, “Ortogonalnye razlozheniya assotsiativnykh algebr i sbalansirovannye sistemy idempotentov”, Matem. sb., 189:12 (1998), 83–102 | DOI | MR | Zbl

[3] D. N. Ivanov, “Odnorodnye ortogonalnye razlozheniya kommutativnykh algebr i matritsy Adamara”, Fundament. i prikl. matem., 1:4 (1995), 1107–1110 | MR | Zbl

[4] D. N. Ivanov, “Razmernost adamarovoi algebry delitsya na 4”, UMN, 60:2 (2005), 163–164 | DOI | MR | Zbl

[5] D. N. Ivanov, “Adamarovy algebry s edinstvennoi nekommutativnoi prostoi komponentoi”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2011, no. 5, 46–48 | MR | Zbl

[6] D. N. Ivanov, “Adamarovy algebry”, Matem. zametki, 96:2 (2014), 207–211 | DOI

[7] D. N. Ivanov, “Adamarovy razlozheniya poluprostykh assotsiativnykh algebr”, UMN, 58:4 (2003), 147–148 | DOI | MR | Zbl

[8] A. I. Kostrikin, I. A. Kostrikin, V. A. Ufnarovskii, “Ortogonalnye razlozheniya prostykh algebr Li (tip $A_n$)”, Analiticheskaya teoriya chisel, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 158, 1981, 105–120 | MR | Zbl