On the Mean Value of the Measure of Irrationality of Real Numbers
Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 271-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the asymptotic behavior of the integral $$ I_\alpha(t)=\int_1^t \psi_\alpha(\xi)\,d\xi, \qquad\text{where}\quad \psi_\alpha(t)=\min_{1\le q\le t}\|q\alpha\| $$ (here the minimum is taken over integers $q$ and $\|\,\cdot\,\|$ denotes the distance to the nearest integer).
Keywords: real number, measure of irrationality, continued fraction
Mots-clés : convergent, Lebesgue measure, Gauss transformation, ergodic transformation.
@article{MZM_2015_98_2_a11,
     author = {D. O. Shatskov},
     title = {On the {Mean} {Value} of the {Measure} of {Irrationality} of {Real} {Numbers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {271--287},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a11/}
}
TY  - JOUR
AU  - D. O. Shatskov
TI  - On the Mean Value of the Measure of Irrationality of Real Numbers
JO  - Matematičeskie zametki
PY  - 2015
SP  - 271
EP  - 287
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a11/
LA  - ru
ID  - MZM_2015_98_2_a11
ER  - 
%0 Journal Article
%A D. O. Shatskov
%T On the Mean Value of the Measure of Irrationality of Real Numbers
%J Matematičeskie zametki
%D 2015
%P 271-287
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a11/
%G ru
%F MZM_2015_98_2_a11
D. O. Shatskov. On the Mean Value of the Measure of Irrationality of Real Numbers. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 271-287. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a11/

[1] T. W. Cusick, M. E. Flahive, The Markoff and Lagrange Spectra, Math. Surveys Monogr., 30, Amer. Math. Soc., Providence, RI, 1989 | DOI | MR | Zbl

[2] V. A. Ivanov, “O ratsionalnykh priblizheniyakh deistvitelnykh chisel”, Matem. zametki, 23:1 (1978), 3–26 | MR | Zbl

[3] I. D. Kan, N. G. Moshchevitin, “Approximations to two real numbers”, Unif. Distrib. Theory, 5:2 (2010), 79–86 | MR | Zbl

[4] A. Ya. Khinchin, Tsepnye drobi, GIFML, M., 1960 | MR | Zbl

[5] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[6] H. Nakada, “Metrical theory for a class of continued fraction transformations and their natural extensions”, Tokyo J. Math., 4:2 (1981), 399–426 | DOI | MR | Zbl

[7] H. Nakada, Sh. Ito, S. Tanaka, “On the invariant measure for the transformation associated with some real continued fraction”, Keio Engrg. Rep., 30:13 (1977), 159–175 | MR | Zbl

[8] G. Halász, “Remarks on the remainder in Birkhoff's ergodic theorem”, Acta Math. Acad. Sci. Hungar., 28:3-4 (1976), 389–395 | DOI | MR | Zbl

[9] K. Dajani, C. Kraaikamp, “A note on the approximation by continued fractions under an extra condition”, New York J. Math., 3A (1998), 69–80 | MR | Zbl