On the Mean Value of the Measure of Irrationality of Real Numbers
Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 271-287
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper deals with the asymptotic behavior of the integral
$$
I_\alpha(t)=\int_1^t \psi_\alpha(\xi)\,d\xi, \qquad\text{where}\quad \psi_\alpha(t)=\min_{1\le q\le t}\|q\alpha\|
$$
(here the minimum is taken over integers $q$ and $\|\,\cdot\,\|$ denotes the distance to the nearest integer).
Keywords:
real number, measure of irrationality, continued fraction
Mots-clés : convergent, Lebesgue measure, Gauss transformation, ergodic transformation.
Mots-clés : convergent, Lebesgue measure, Gauss transformation, ergodic transformation.
@article{MZM_2015_98_2_a11,
author = {D. O. Shatskov},
title = {On the {Mean} {Value} of the {Measure} of {Irrationality} of {Real} {Numbers}},
journal = {Matemati\v{c}eskie zametki},
pages = {271--287},
publisher = {mathdoc},
volume = {98},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a11/}
}
D. O. Shatskov. On the Mean Value of the Measure of Irrationality of Real Numbers. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 271-287. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a11/