Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_98_2_a11, author = {D. O. Shatskov}, title = {On the {Mean} {Value} of the {Measure} of {Irrationality} of {Real} {Numbers}}, journal = {Matemati\v{c}eskie zametki}, pages = {271--287}, publisher = {mathdoc}, volume = {98}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a11/} }
D. O. Shatskov. On the Mean Value of the Measure of Irrationality of Real Numbers. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 271-287. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a11/
[1] T. W. Cusick, M. E. Flahive, The Markoff and Lagrange Spectra, Math. Surveys Monogr., 30, Amer. Math. Soc., Providence, RI, 1989 | DOI | MR | Zbl
[2] V. A. Ivanov, “O ratsionalnykh priblizheniyakh deistvitelnykh chisel”, Matem. zametki, 23:1 (1978), 3–26 | MR | Zbl
[3] I. D. Kan, N. G. Moshchevitin, “Approximations to two real numbers”, Unif. Distrib. Theory, 5:2 (2010), 79–86 | MR | Zbl
[4] A. Ya. Khinchin, Tsepnye drobi, GIFML, M., 1960 | MR | Zbl
[5] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl
[6] H. Nakada, “Metrical theory for a class of continued fraction transformations and their natural extensions”, Tokyo J. Math., 4:2 (1981), 399–426 | DOI | MR | Zbl
[7] H. Nakada, Sh. Ito, S. Tanaka, “On the invariant measure for the transformation associated with some real continued fraction”, Keio Engrg. Rep., 30:13 (1977), 159–175 | MR | Zbl
[8] G. Halász, “Remarks on the remainder in Birkhoff's ergodic theorem”, Acta Math. Acad. Sci. Hungar., 28:3-4 (1976), 389–395 | DOI | MR | Zbl
[9] K. Dajani, C. Kraaikamp, “A note on the approximation by continued fractions under an extra condition”, New York J. Math., 3A (1998), 69–80 | MR | Zbl