Optimal Recovery of Harmonic Functions in the Ball from Inaccurate Information on the Radon Transform
Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 163-172

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the optimal recovery of harmonic functions in the ball from inaccurate information on the Radon transform. Presented are the error of the optimal recovery and the set of optimal methods for which this error is attained.
Keywords: optimal recovery, harmonic function, Hardy space, spherical harmonic, Lagrange function, Bessel function.
Mots-clés : Radon transform, Gegenbauer polynomial
@article{MZM_2015_98_2_a0,
     author = {T. \`E. Bagramyan},
     title = {Optimal {Recovery} of {Harmonic} {Functions} in the {Ball} from {Inaccurate} {Information} on the {Radon} {Transform}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--172},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a0/}
}
TY  - JOUR
AU  - T. È. Bagramyan
TI  - Optimal Recovery of Harmonic Functions in the Ball from Inaccurate Information on the Radon Transform
JO  - Matematičeskie zametki
PY  - 2015
SP  - 163
EP  - 172
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a0/
LA  - ru
ID  - MZM_2015_98_2_a0
ER  - 
%0 Journal Article
%A T. È. Bagramyan
%T Optimal Recovery of Harmonic Functions in the Ball from Inaccurate Information on the Radon Transform
%J Matematičeskie zametki
%D 2015
%P 163-172
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a0/
%G ru
%F MZM_2015_98_2_a0
T. È. Bagramyan. Optimal Recovery of Harmonic Functions in the Ball from Inaccurate Information on the Radon Transform. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 163-172. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a0/