Optimal Recovery of Harmonic Functions in the Ball from Inaccurate Information on the Radon Transform
Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 163-172
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of the optimal recovery of harmonic functions in the ball from inaccurate information on the Radon transform. Presented are the error of the optimal recovery and the set of optimal methods for which this error is attained.
Keywords:
optimal recovery, harmonic function, Hardy space, spherical harmonic, Lagrange function, Bessel function.
Mots-clés : Radon transform, Gegenbauer polynomial
Mots-clés : Radon transform, Gegenbauer polynomial
@article{MZM_2015_98_2_a0,
author = {T. \`E. Bagramyan},
title = {Optimal {Recovery} of {Harmonic} {Functions} in the {Ball} from {Inaccurate} {Information} on the {Radon} {Transform}},
journal = {Matemati\v{c}eskie zametki},
pages = {163--172},
publisher = {mathdoc},
volume = {98},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a0/}
}
TY - JOUR AU - T. È. Bagramyan TI - Optimal Recovery of Harmonic Functions in the Ball from Inaccurate Information on the Radon Transform JO - Matematičeskie zametki PY - 2015 SP - 163 EP - 172 VL - 98 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a0/ LA - ru ID - MZM_2015_98_2_a0 ER -
T. È. Bagramyan. Optimal Recovery of Harmonic Functions in the Ball from Inaccurate Information on the Radon Transform. Matematičeskie zametki, Tome 98 (2015) no. 2, pp. 163-172. http://geodesic.mathdoc.fr/item/MZM_2015_98_2_a0/