Completely Decomposable Quotient Divisible Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms
Matematičeskie zametki, Tome 98 (2015) no. 1, pp. 125-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ring $K$ is called a unique addition ring (a $\mathrm{UA}$-ring) if there exists a unique binary operation $+$ on the multiplicative semigroup $(K,\,\cdot\,)$ of $K$ such that $(K,\,\cdot\,,+)$ is a ring. We say that an abelian group is an $\operatorname{End}$-$\mathrm{UA}$-group if its endomorphism ring is a $\mathrm{UA}$-ring. We find $\operatorname{End}$-$\mathrm{UA}$-groups in the class of completely decomposable quotient divisible abelian groups.
Keywords: $\mathrm{UA}$-ring, $\operatorname{End}$-$\mathrm{UA}$-group, completely decomposable quotient divisible abelian group
Mots-clés : $p$-group, $p$-divisible group.
@article{MZM_2015_98_1_a8,
     author = {O. V. Ljubimtsev},
     title = {Completely {Decomposable} {Quotient} {Divisible} {Abelian} {Groups} with~$\mathrm{UA}${-Rings} of {Endomorphisms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {125--133},
     publisher = {mathdoc},
     volume = {98},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a8/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
TI  - Completely Decomposable Quotient Divisible Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms
JO  - Matematičeskie zametki
PY  - 2015
SP  - 125
EP  - 133
VL  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a8/
LA  - ru
ID  - MZM_2015_98_1_a8
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%T Completely Decomposable Quotient Divisible Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms
%J Matematičeskie zametki
%D 2015
%P 125-133
%V 98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a8/
%G ru
%F MZM_2015_98_1_a8
O. V. Ljubimtsev. Completely Decomposable Quotient Divisible Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms. Matematičeskie zametki, Tome 98 (2015) no. 1, pp. 125-133. http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a8/

[1] A. V. Mikhalev, “Multiplikativnaya klassifikatsiya assotsiativnykh kolets”, Matem. sb., 135:2 (1988), 210–224 | MR | Zbl

[2] W. Stephenson, “Unique addition rings”, Canad. J. Math., 21:6 (1969), 1455–1461 | DOI | MR | Zbl

[3] R. A. Beaumont, R. S. Pierce, “Torsion–free rings”, Illinois J. Math., 5 (1961), 61–98 | MR | Zbl

[4] A. A. Fomin, W. Wickless, “Quotient divisible abelian groups”, Proc. Amer. Math. Soc., 126:1 (1998), 45–52 | DOI | MR | Zbl

[5] O. V. Lyubimtsev, “Separabelnye abelevy gruppy bez krucheniya s $UA$-koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1419–1422 | MR | Zbl

[6] O. V. Lyubimtsev, “Periodicheskie abelevy gruppy s $UA$-koltsami endomorfizmov”, Matem. zametki, 70:5 (2001), 736–741 | DOI | MR | Zbl

[7] L. Fuks, Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974 ; Л. Фукс, Бесконечные абелевы группы, Т. 2, Мир, М., 1977 | MR | Zbl | MR | Zbl

[8] O. Lyubimcev, A. Sebeldin, C. Vinsonhaler, “Separable torsion-free abelian $E^*$-groups”, J. Pure Appl. Algebra, 133:1-2 (1998), 203–208 | DOI | MR | Zbl

[9] O. I. Davydova, “Faktorno delimye gruppy ranga 1”, Fundament. i prikl. matem., 13:3 (2007), 25–33 | MR | Zbl

[10] O. I. Davydova, Faktorno delimye gruppy ranga 1, Dis. $\dots$ k.f.-m.n., MPGU, M., 2009

[11] A. A. Fomin, “K teorii faktorno delimykh grupp. I”, Fundament. i prikl. matem., 17:8 (2012), 153–167