Completely Decomposable Quotient Divisible Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms
Matematičeskie zametki, Tome 98 (2015) no. 1, pp. 125-133
Voir la notice de l'article provenant de la source Math-Net.Ru
A ring $K$ is called a unique addition ring (a $\mathrm{UA}$-ring) if there exists a unique binary operation $+$ on the multiplicative semigroup $(K,\,\cdot\,)$ of $K$ such that $(K,\,\cdot\,,+)$ is a ring. We say that an abelian group is an $\operatorname{End}$-$\mathrm{UA}$-group if its endomorphism ring is a $\mathrm{UA}$-ring. We find $\operatorname{End}$-$\mathrm{UA}$-groups in the class of completely decomposable quotient divisible abelian groups.
Keywords:
$\mathrm{UA}$-ring, $\operatorname{End}$-$\mathrm{UA}$-group, completely decomposable quotient divisible abelian group
Mots-clés : $p$-group, $p$-divisible group.
Mots-clés : $p$-group, $p$-divisible group.
@article{MZM_2015_98_1_a8,
author = {O. V. Ljubimtsev},
title = {Completely {Decomposable} {Quotient} {Divisible} {Abelian} {Groups} with~$\mathrm{UA}${-Rings} of {Endomorphisms}},
journal = {Matemati\v{c}eskie zametki},
pages = {125--133},
publisher = {mathdoc},
volume = {98},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a8/}
}
TY - JOUR
AU - O. V. Ljubimtsev
TI - Completely Decomposable Quotient Divisible Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms
JO - Matematičeskie zametki
PY - 2015
SP - 125
EP - 133
VL - 98
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a8/
LA - ru
ID - MZM_2015_98_1_a8
ER -
O. V. Ljubimtsev. Completely Decomposable Quotient Divisible Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms. Matematičeskie zametki, Tome 98 (2015) no. 1, pp. 125-133. http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a8/