Completely Decomposable Quotient Divisible Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms
Matematičeskie zametki, Tome 98 (2015) no. 1, pp. 125-133

Voir la notice de l'article provenant de la source Math-Net.Ru

A ring $K$ is called a unique addition ring (a $\mathrm{UA}$-ring) if there exists a unique binary operation $+$ on the multiplicative semigroup $(K,\,\cdot\,)$ of $K$ such that $(K,\,\cdot\,,+)$ is a ring. We say that an abelian group is an $\operatorname{End}$-$\mathrm{UA}$-group if its endomorphism ring is a $\mathrm{UA}$-ring. We find $\operatorname{End}$-$\mathrm{UA}$-groups in the class of completely decomposable quotient divisible abelian groups.
Keywords: $\mathrm{UA}$-ring, $\operatorname{End}$-$\mathrm{UA}$-group, completely decomposable quotient divisible abelian group
Mots-clés : $p$-group, $p$-divisible group.
@article{MZM_2015_98_1_a8,
     author = {O. V. Ljubimtsev},
     title = {Completely {Decomposable} {Quotient} {Divisible} {Abelian} {Groups} with~$\mathrm{UA}${-Rings} of {Endomorphisms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {125--133},
     publisher = {mathdoc},
     volume = {98},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a8/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
TI  - Completely Decomposable Quotient Divisible Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms
JO  - Matematičeskie zametki
PY  - 2015
SP  - 125
EP  - 133
VL  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a8/
LA  - ru
ID  - MZM_2015_98_1_a8
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%T Completely Decomposable Quotient Divisible Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms
%J Matematičeskie zametki
%D 2015
%P 125-133
%V 98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a8/
%G ru
%F MZM_2015_98_1_a8
O. V. Ljubimtsev. Completely Decomposable Quotient Divisible Abelian Groups with~$\mathrm{UA}$-Rings of Endomorphisms. Matematičeskie zametki, Tome 98 (2015) no. 1, pp. 125-133. http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a8/