Mots-clés : Cauchy–Riemann equations
@article{MZM_2015_98_1_a2,
author = {B. O. Vasilevskii},
title = {The {Green} {Function} of the {Discrete} {Finite-Gap} {One-Energy} {Two-Dimensional} {Schr\"odinger} {Operator} on the {Quad} {Graph}},
journal = {Matemati\v{c}eskie zametki},
pages = {27--43},
year = {2015},
volume = {98},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a2/}
}
TY - JOUR AU - B. O. Vasilevskii TI - The Green Function of the Discrete Finite-Gap One-Energy Two-Dimensional Schrödinger Operator on the Quad Graph JO - Matematičeskie zametki PY - 2015 SP - 27 EP - 43 VL - 98 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a2/ LA - ru ID - MZM_2015_98_1_a2 ER -
B. O. Vasilevskii. The Green Function of the Discrete Finite-Gap One-Energy Two-Dimensional Schrödinger Operator on the Quad Graph. Matematičeskie zametki, Tome 98 (2015) no. 1, pp. 27-43. http://geodesic.mathdoc.fr/item/MZM_2015_98_1_a2/
[1] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Uravnenie Shredingera v periodicheskom pole i rimanovy poverkhnosti”, Dokl. AN SSSR, 229:1 (1976), 15–18 | MR | Zbl
[2] I. M. Krichever, “Dvumernye periodicheskie raznostnye operatory i algebraicheskaya geometriya”, Dokl. AN SSSR, 285:1 (1985), 31–36 | MR | Zbl
[3] A. Doliwa, P. Grinevich, M. Nieszporski, P. M. Santini, “Integrable lattices and their sub-lattices: from the discrete Moutard (discrete Cauchy–Riemann) 4-point equation to the self-adjoint 5-point scheme”, J. Math. Phys., 48:1 (2007), 013513 | DOI | MR | Zbl
[4] A. P. Veselov, S. P. Novikov, “Konechnozonnye dvumernye operatory Shredingera. Yavnye formuly i evolyutsionnye uravneniya”, Dokl. AN SSSR, 279:1 (1984), 20–24 | MR | Zbl
[5] A. P. Veselov, S. P. Novikov, “Konechnozonnye dvumernye operatory Shredingera. Potentsialnye operatory”, Dokl. AN SSSR, 279:4 (1984), 784–788 | MR | Zbl
[6] J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Math., Springer-Verlag, Berlin, 1973 | DOI | MR | Zbl
[7] S. Grushevsky, I. Krichever, “Integrable discrete Schrödinger equations and a characterization of Prym varieties by a pair of quadrisecants”, Duke Math. J., 152:2 (2010), 317–371 | DOI | MR | Zbl
[8] A. I. Bobenko, C. Mercat, Y. B. Suris, “Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green's function”, J. Reine Angew. Math., 583 (2005), 117–161 | DOI | MR | Zbl
[9] A. A. Akhmetshin, Yu. S. Volvovskii, I. M. Krichever, “Diskretnye analogi metrik Darbu–Egorova”, Solitony, geometriya, topologiya — na perekrestkakh, Tr. MIAN, 225, Nauka, M., 1999, 21–45 | MR | Zbl
[10] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl
[11] I. M. Krichever, S. P. Novikov, “Algebry tipa Virasoro, rimanovy poverkhnosti i struktury teorii solitonov”, Funkts. analiz i ego pril., 21:2 (1987), 46–63 | MR | Zbl