Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_6_a6, author = {A. A. Panin}, title = {On {Local} {Solvability} and {Blow-Up} of {Solutions} of an {Abstract} {Nonlinear} {Volterra} {Integral} {Equation}}, journal = {Matemati\v{c}eskie zametki}, pages = {884--903}, publisher = {mathdoc}, volume = {97}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a6/} }
TY - JOUR AU - A. A. Panin TI - On Local Solvability and Blow-Up of Solutions of an Abstract Nonlinear Volterra Integral Equation JO - Matematičeskie zametki PY - 2015 SP - 884 EP - 903 VL - 97 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a6/ LA - ru ID - MZM_2015_97_6_a6 ER -
A. A. Panin. On Local Solvability and Blow-Up of Solutions of an Abstract Nonlinear Volterra Integral Equation. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 884-903. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a6/
[1] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR | Zbl
[2] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR
[3] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+\mathfrak F(u)$”, Arch. Ration. Mech. Anal., 51 (1973), 371–386 | DOI | MR | Zbl
[4] V. K. Kalantarov, O. A. Ladyzhenskaya, “O vozniknovenii kollapsov dlya kvazilineinykh uravnenii parabolicheskogo i giperbolicheskogo tipov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 10, Zap. nauchn. sem. LOMI, 69, Izd-vo «Nauka», Leningrad. otd., L., 1977, 77–102 | MR | Zbl
[5] V. A. Galaktionov, J. A. Vázqez, “The problem of blow-up in nonlinear parabolic equations”, Discrete Contin. Dyn. Syst., 8:2 (2002), 399–433 | DOI | MR | Zbl
[6] Chi-Cheung Poon, “Blow-up of a degenerate non-linear heat equation”, Taiwanese J. Math., 15:3 (2011), 1201–1225 | MR | Zbl
[7] M. O. Korpusov, “O razrushenii reshenii trekhmernogo uravneniya Rozenau–Byurgersa”, TMF, 170:3 (2012), 342–349 | DOI | Zbl
[8] M. O. Korpusov, “On the blow-up of solutions of the Benjamin–Bona–Mahony–Burgers and Rosenau–Burgers equations”, Nonlinear Anal.: Theory Methods Appl., 75:4 (2012), 1737–1743 | DOI | MR | Zbl
[9] S. Ishida, T. Yokota, “Blow-up in finite or infinite time for quasilinear degenerate Keller–Segel systems of parabolic-parabolic type”, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569–2596 | DOI | MR | Zbl
[10] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl
[11] A. Kartan, Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971 | MR | Zbl
[12] G. Gripenberg, S.-O. Londen, O. Staffans, Volterra Integral and Functional Equations, Encyclopedia Math. Appl., 34, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[13] N. A. Burton, Volterra Integral and Differential Equations, Elsevier Science, Amsterdam, 2005 | MR | Zbl
[14] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge Monogr. Appl. Comput. Math., 15, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[15] W. Mydlarczyk, “A condition for finite blow-up time for a Volterra integral equation”, J. Math. Anal. Appls., 181:1 (1994), 248–253 | DOI | MR | Zbl
[16] W. Mydlarczyk, “The blow-up solutions of integral equations”, Colloq. Math., 79:1 (1999), 147–156 | MR | Zbl
[17] P. J.Bushell, W. Okrasinski, “On the maximal interval of existence for solutions to some non-linear Volterra integral equations with convolutional kernel”, Bull. London Math. Soc., 28:1 (1996), 59–65 | DOI | MR | Zbl
[18] C. A. Roberts, “Characterizing the blow-up solutions for nonlinear Volterra integral equations”, Nonlinear Anal.: Theory Methods Appl., 30:2 (1997), 923–933 | DOI | MR | Zbl
[19] M. R. Arias, R. Benítez, “Properties of solutions for nonlinear Volterra integral equations”, Discrete Contin. Dyn. Syst., 2003, Suppl., 42–47 | MR | Zbl
[20] T. Małolepszy, W. Okrasiński, “Conditions for blow-up of solutions of some nonlinear Volterra integral equations”, J. Comput. Appl. Math., 205:2 (2007), 744–750 | DOI | MR | Zbl
[21] F. Calabrò, G. Capobianco, “Blowing up behavior for a class of nonlinear VIEs connected with parabolic PDEs”, J. Comput. Appl. Math., 228:2 (2009), 580–588 | DOI | MR | Zbl
[22] T. Małolepszy, M. Niedziela, “A note on blow-up solutions to some nonlinear Volterra integral equations”, Appl. Math. Comput., 218:11 (2012), 6401–6406 | DOI | MR | Zbl
[23] D. N. Sidorov, N. A. Sidorov, “Convex majorants method in the theory of nonlinear Volterra equations”, Banach J. Math. Anal., 6:1 (2012), 1–10 | DOI | MR | Zbl
[24] C. A. Roberts, “Analysis of explosion for nonlinear Volterra equations”, J. Comput. Appl. Math., 97:1-2 (1998), 153–166 | DOI | MR | Zbl
[25] C. A. Roberts, “Recent results on blow-up and quenching for nonlinear Volterra equations”, J. Comput. Appl. Math., 205:2 (2007), 736–743 | DOI | MR | Zbl
[26] R. K. Miller, Nonlinear Volterra Integral Equations, W. A. Benjamin, Menlo Park, CA, 1971 | MR | Zbl
[27] Z. Artstein, “Continuous dependence of solutions of Volterra integral equations”, SIAM Jour. Math. Anal., 6 (1975), 446–456 | DOI | MR | Zbl
[28] T. Herdman, “Behavior of maximally defined solutions of a nonlinear Volterra equation”, Proc. Amer. Math. Soc., 67:2 (1977), 297–302 | DOI | MR
[29] A. D. Myshkis, “Obschaya teoriya differentsialnykh uravnenii s zapazdyvayuschim argumentom”, UMN, 4:5 (1949), 99–141 | MR | Zbl
[30] T. L. Herdman, “A note on noncontinuable solution of a delay differential equation”, Differential Equations, Academic Press, New York, 1980, 187–192 | MR | Zbl
[31] L. A. Lyusternik, V. I. Sobolev, Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR | Zbl
[32] V. Komornik, P. Martinez, M. Pierre, J. Vanconsenoble, ““Blow-up” of bounded solutions of differential equations”, Acta Sci. Math. (Szeged), 69:3-4 (2003), 651–657 | MR | Zbl
[33] V. I. Bogachev, O. G. Smolyanov, V. I. Sobolev, Topologicheskie vektornye prostranstva i ikh prilozheniya, RKhD, M.–Izhevsk, 2012