On Local Solvability and Blow-Up of Solutions of an Abstract Nonlinear Volterra Integral Equation
Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 884-903

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem on noncontinuable solutions is proved for abstract Volterra integral equations with operator-valued kernels (continuous and polar). It is shown that if there is no global solvability, then the $C$-norm of the solution is unbounded but does not tend to infinity in general. An example of Volterra equations whose noncontinuable solutions are unbounded but not infinitely large is constructed. It is shown that the theorems on noncontinuable solutions of the Cauchy problem for abstract equations of the first and $n$th kind (with a linear leading part) are special cases of the theorems proved in this paper.
Keywords: Volterra integral equation, local solvability, noncontinuable solution, solution blow-up.
@article{MZM_2015_97_6_a6,
     author = {A. A. Panin},
     title = {On {Local} {Solvability} and {Blow-Up} of {Solutions} of an {Abstract} {Nonlinear} {Volterra} {Integral} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {884--903},
     publisher = {mathdoc},
     volume = {97},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a6/}
}
TY  - JOUR
AU  - A. A. Panin
TI  - On Local Solvability and Blow-Up of Solutions of an Abstract Nonlinear Volterra Integral Equation
JO  - Matematičeskie zametki
PY  - 2015
SP  - 884
EP  - 903
VL  - 97
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a6/
LA  - ru
ID  - MZM_2015_97_6_a6
ER  - 
%0 Journal Article
%A A. A. Panin
%T On Local Solvability and Blow-Up of Solutions of an Abstract Nonlinear Volterra Integral Equation
%J Matematičeskie zametki
%D 2015
%P 884-903
%V 97
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a6/
%G ru
%F MZM_2015_97_6_a6
A. A. Panin. On Local Solvability and Blow-Up of Solutions of an Abstract Nonlinear Volterra Integral Equation. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 884-903. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a6/