On Local Solvability and Blow-Up of Solutions of an Abstract Nonlinear Volterra Integral Equation
Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 884-903
Voir la notice de l'article provenant de la source Math-Net.Ru
A theorem on noncontinuable solutions is proved for abstract Volterra integral equations with operator-valued kernels (continuous and polar). It is shown that if there is no global solvability, then the $C$-norm of the solution is unbounded but does not tend to infinity in general. An example of Volterra equations whose noncontinuable solutions are unbounded but not infinitely large is constructed. It is shown that the theorems on noncontinuable solutions of the Cauchy problem for abstract equations of the first and $n$th kind (with a linear leading part) are special cases of the theorems proved in this paper.
Keywords:
Volterra integral equation, local solvability, noncontinuable solution, solution blow-up.
@article{MZM_2015_97_6_a6,
author = {A. A. Panin},
title = {On {Local} {Solvability} and {Blow-Up} of {Solutions} of an {Abstract} {Nonlinear} {Volterra} {Integral} {Equation}},
journal = {Matemati\v{c}eskie zametki},
pages = {884--903},
publisher = {mathdoc},
volume = {97},
number = {6},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a6/}
}
TY - JOUR AU - A. A. Panin TI - On Local Solvability and Blow-Up of Solutions of an Abstract Nonlinear Volterra Integral Equation JO - Matematičeskie zametki PY - 2015 SP - 884 EP - 903 VL - 97 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a6/ LA - ru ID - MZM_2015_97_6_a6 ER -
A. A. Panin. On Local Solvability and Blow-Up of Solutions of an Abstract Nonlinear Volterra Integral Equation. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 884-903. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a6/