Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_6_a4, author = {D. K. Durdiev and Zh. Sh. Safarov}, title = {Inverse {Problem} of {Determining} the {One-Dimensional} {Kernel} of the {Viscoelasticity} {Equation} in a {Bounded} {Domain}}, journal = {Matemati\v{c}eskie zametki}, pages = {855--867}, publisher = {mathdoc}, volume = {97}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a4/} }
TY - JOUR AU - D. K. Durdiev AU - Zh. Sh. Safarov TI - Inverse Problem of Determining the One-Dimensional Kernel of the Viscoelasticity Equation in a Bounded Domain JO - Matematičeskie zametki PY - 2015 SP - 855 EP - 867 VL - 97 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a4/ LA - ru ID - MZM_2015_97_6_a4 ER -
%0 Journal Article %A D. K. Durdiev %A Zh. Sh. Safarov %T Inverse Problem of Determining the One-Dimensional Kernel of the Viscoelasticity Equation in a Bounded Domain %J Matematičeskie zametki %D 2015 %P 855-867 %V 97 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a4/ %G ru %F MZM_2015_97_6_a4
D. K. Durdiev; Zh. Sh. Safarov. Inverse Problem of Determining the One-Dimensional Kernel of the Viscoelasticity Equation in a Bounded Domain. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 855-867. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a4/
[1] A. Lorenzi, E. Paparoni, “Direct and inverse problems in the theory of materials with memory”, Rend. Sem. Mat. Univ. Padova, 1992, no. 87, 105–138 | MR | Zbl
[2] A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear Anal.: Theory Methods Appl., 22 (1994), 297–321 | MR | Zbl
[3] A. Lorenzi, V. I. Priimenko, “Identification problems related to electro-magneto-elastic interactions”, J. Inverse Ill-Posed Probl., 4:2 (1996), 115–143 | MR | Zbl
[4] A. L. Bukhgeim, “Inverse problems of memory reconstrution”, J. Inverse Ill-Posed Probl., 1:3 (1993), 193–205 | MR | Zbl
[5] L. Bukhgeim, G. V. Dyatlov, “Edinstvennost v odnoi obratnoi zadache opredeleniya pamyati”, Sib. matem. zhurn., 37:3 (1996), 526–533 | MR | Zbl
[6] A. L. Bukhgeim, N. I. Kalinina, “Globalnaya skhodimost metoda Nyutona v obratnykh zadachakh vosstanovleniya pamyati”, Sib. matem. zhurn., 38:5 (1997), 1018–1033 | MR | Zbl
[7] A. L. Bukhgeim, G. V. Dyatlov, V. M. Isakov, “Ustoichivost vosstanovleniya pamyati po operatoru Dirikhle–Neimana”, Sib. matem. zhurn., 38:4 (1997), 738–749 | MR | Zbl
[8] J. Janno, L. Von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[9] A. L. Bukhgeim, N. I. Kalinina, V. B. Kardakov, “Dva metoda v obratnoi zadache opredeleniya pamyati”, Sib. matem. zhurn., 41:4 (2000), 767–776 | MR | Zbl
[10] A. Lorenzi, F. Messina, V. G. Romanov, “Recovering a Láme kernel in a viscoelastic system”, Appl. Anal., 86:11 (2007), 1375–1395 | DOI | MR | Zbl
[11] D. K. Durdiev, “Globalnaya razreshimost odnoi obratnoi zadachi dlya integrodifferentsialnogo uravneniya elektrodinamiki”, Differents. uravneniya, 44:7 (2008), 867–873 | MR | Zbl
[12] D. K. Durdiev, “Obratnaya zadacha opredeleniya dvukh koeffitsientov v odnom integrodifferentsialnom volnovom uravnenii”, Sib. zhurn. industr. matem., 12:3 (2009), 28–40 | Zbl
[13] A. Lorenzi, V. G. Romanov, “Recovering two Lamé kernels in a viscoelastic system”, Inverse. Probl. Imaging, 5:2 (2011), 431–464 | DOI | MR | Zbl
[14] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 16:2 (2013), 72–82 | MR
[15] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR | Zbl
[16] A. S. Alekseev, V. I. Dobrinskii, “Nekotorye voprosy prilozheniya obratnoi dinamicheskoi zadachi seismologii”, Matematicheskie problemy geofiziki, 6, no. 2, Izd-vo VTs SO AN SSSR, Novosibirsk, 1975, 7–53 | Zbl