Estimates of the Mixed Norms of Derivatives and of the Mixed Moduli of Smoothness of Functions Having Monotone Fourier Coefficients
Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 841-854.

Voir la notice de l'article provenant de la source Math-Net.Ru

Lower and upper bounds for the mixed norms of derivatives and mixed moduli of smoothness of functions having monotone Fourier coefficients are proved.
Keywords: mixed norm of a derivative, mixed modulus of smoothness, Pringsheim convergence, Hardy–Littlewood theorem.
Mots-clés : Fourier coefficient
@article{MZM_2015_97_6_a3,
     author = {T. M. Vukolova},
     title = {Estimates of the {Mixed} {Norms} of {Derivatives} and of the {Mixed} {Moduli} of {Smoothness} of {Functions} {Having} {Monotone} {Fourier} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {841--854},
     publisher = {mathdoc},
     volume = {97},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a3/}
}
TY  - JOUR
AU  - T. M. Vukolova
TI  - Estimates of the Mixed Norms of Derivatives and of the Mixed Moduli of Smoothness of Functions Having Monotone Fourier Coefficients
JO  - Matematičeskie zametki
PY  - 2015
SP  - 841
EP  - 854
VL  - 97
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a3/
LA  - ru
ID  - MZM_2015_97_6_a3
ER  - 
%0 Journal Article
%A T. M. Vukolova
%T Estimates of the Mixed Norms of Derivatives and of the Mixed Moduli of Smoothness of Functions Having Monotone Fourier Coefficients
%J Matematičeskie zametki
%D 2015
%P 841-854
%V 97
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a3/
%G ru
%F MZM_2015_97_6_a3
T. M. Vukolova. Estimates of the Mixed Norms of Derivatives and of the Mixed Moduli of Smoothness of Functions Having Monotone Fourier Coefficients. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 841-854. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a3/

[1] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[2] A. Zigmund, Trigonometricheskie ryady, T. 1, 2, Mir, M., 1965 | MR | Zbl | Zbl

[3] M. I. Dyachenko, M. K. Potapov, B. V. Simonov, S. Yu. Tikhonov, “Moduli gladkosti drobnykh poryadkov funktsii iz prostranstv $L_p$, $1 p \infty$”, Sovremennye problemy matematiki i mekhaniki, Tr. mekh.-matem. fak-ta MGU, 6, no. 1, MGU, M., 2011, 90–110

[4] M. I. Dyachenko, “O skhodimosti dvoinykh trigonometricheskikh ryadov i ryadov Fure s monotonnymi koeffitsientami”, Matem. sb., 129:1 (1986), 55–72 | MR | Zbl

[5] T. M. Vukolova, M. I. Dyachenko, “O svoistvakh summ trigonometricheskikh ryadov s monotonnymi koeffitsientami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1995, no. 3, 22–32 | MR | Zbl

[6] B. V. Simonov, “Vzaimosvyaz modulei gladkosti s chastichnymi summami ryada Fure i teoremy vlozheniya klassov Nikolskogo”, Dokl. RAN, 437:6 (2011), 751–753 | MR | Zbl

[7] G. H. Hardy, “On double Fourier series, and especially those which represent the double zeta-function with real and incommensurable parameters”, Quart. J., 37 (1905), 53–79 | Zbl