Mots-clés : Perron's formula
@article{MZM_2015_97_6_a10,
author = {M. E. Changa},
title = {On the {Quantity} of {Numbers} of {Special} {Form} {Depending} on the {Parity} of the {Number} of {Their} {Different} {Prime} {Divisors}},
journal = {Matemati\v{c}eskie zametki},
pages = {930--935},
year = {2015},
volume = {97},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a10/}
}
TY - JOUR AU - M. E. Changa TI - On the Quantity of Numbers of Special Form Depending on the Parity of the Number of Their Different Prime Divisors JO - Matematičeskie zametki PY - 2015 SP - 930 EP - 935 VL - 97 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a10/ LA - ru ID - MZM_2015_97_6_a10 ER -
M. E. Changa. On the Quantity of Numbers of Special Form Depending on the Parity of the Number of Their Different Prime Divisors. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 930-935. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a10/
[1] I. M. Vinogradov, “Nekotoroe obschee svoistvo raspredeleniya prostykh chisel”, Matem. sb., 7:2 (1940), 365–372 | MR | Zbl
[2] M. E. Changa, “Prostye chisla v spetsialnykh promezhutkakh i additivnye zadachi s takimi chislami”, Matem. zametki, 73:3 (2003), 423–436 | DOI | MR | Zbl
[3] C. Mauduit, J. Rivat, “Sur un problème de Gelfond: la somme des chiffres des nombres premiers”, Ann. of Math. (2), 171:3 (2010), 1591–1646 | DOI | MR | Zbl
[4] A. A. Karatsuba, “Ob odnom svoistve mnozhestva prostykh chisel”, UMN, 66:2 (2011), 3–14 | DOI | MR | Zbl
[5] A. A. Karatsuba, “Ob odnom svoistve mnozhestva prostykh chisel kak multiplikativnogo bazisa naturalnogo ryada”, Dokl. RAN, 439:2 (2011), 159–162 | MR | Zbl
[6] M. E. Changa, “O chislakh, vse prostye deliteli kotorykh lezhat v spetsialnykh promezhutkakh”, Izv. RAN. Ser. matem., 67:4 (2003), 213–224 | DOI | MR | Zbl
[7] M. E. Changa, Metody analiticheskoi teorii chisel, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.-Izhevsk, 2013