Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_6_a10, author = {M. E. Changa}, title = {On the {Quantity} of {Numbers} of {Special} {Form} {Depending} on the {Parity} of the {Number} of {Their} {Different} {Prime} {Divisors}}, journal = {Matemati\v{c}eskie zametki}, pages = {930--935}, publisher = {mathdoc}, volume = {97}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a10/} }
TY - JOUR AU - M. E. Changa TI - On the Quantity of Numbers of Special Form Depending on the Parity of the Number of Their Different Prime Divisors JO - Matematičeskie zametki PY - 2015 SP - 930 EP - 935 VL - 97 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a10/ LA - ru ID - MZM_2015_97_6_a10 ER -
%0 Journal Article %A M. E. Changa %T On the Quantity of Numbers of Special Form Depending on the Parity of the Number of Their Different Prime Divisors %J Matematičeskie zametki %D 2015 %P 930-935 %V 97 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a10/ %G ru %F MZM_2015_97_6_a10
M. E. Changa. On the Quantity of Numbers of Special Form Depending on the Parity of the Number of Their Different Prime Divisors. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 930-935. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a10/
[1] I. M. Vinogradov, “Nekotoroe obschee svoistvo raspredeleniya prostykh chisel”, Matem. sb., 7:2 (1940), 365–372 | MR | Zbl
[2] M. E. Changa, “Prostye chisla v spetsialnykh promezhutkakh i additivnye zadachi s takimi chislami”, Matem. zametki, 73:3 (2003), 423–436 | DOI | MR | Zbl
[3] C. Mauduit, J. Rivat, “Sur un problème de Gelfond: la somme des chiffres des nombres premiers”, Ann. of Math. (2), 171:3 (2010), 1591–1646 | DOI | MR | Zbl
[4] A. A. Karatsuba, “Ob odnom svoistve mnozhestva prostykh chisel”, UMN, 66:2 (2011), 3–14 | DOI | MR | Zbl
[5] A. A. Karatsuba, “Ob odnom svoistve mnozhestva prostykh chisel kak multiplikativnogo bazisa naturalnogo ryada”, Dokl. RAN, 439:2 (2011), 159–162 | MR | Zbl
[6] M. E. Changa, “O chislakh, vse prostye deliteli kotorykh lezhat v spetsialnykh promezhutkakh”, Izv. RAN. Ser. matem., 67:4 (2003), 213–224 | DOI | MR | Zbl
[7] M. E. Changa, Metody analiticheskoi teorii chisel, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.-Izhevsk, 2013