Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_6_a1, author = {R. A. Veprintsev}, title = {Approximation of the {Multidimensional} {Jacobi} {Transform} in~$L_2$ by {Partial} {Integrals}}, journal = {Matemati\v{c}eskie zametki}, pages = {815--831}, publisher = {mathdoc}, volume = {97}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a1/} }
R. A. Veprintsev. Approximation of the Multidimensional Jacobi Transform in~$L_2$ by Partial Integrals. Matematičeskie zametki, Tome 97 (2015) no. 6, pp. 815-831. http://geodesic.mathdoc.fr/item/MZM_2015_97_6_a1/
[1] V. V. Arestov, N. I. Chernykh, “On the $L_2$-approximation of periodic functions by trigonometric polynomials”, Approximation and Function Spaces, North-Holland, Amsterdam, 1981, 25–43 | MR | Zbl
[2] N. I. Chernykh, “O neravenstve Dzheksona v $L_2$”, Priblizhenie funktsii v srednem, Sbornik rabot, Tr. MIAN SSSR, 88, 1967, 71–74 | MR | Zbl
[3] E. E. Berdysheva, “Dve vzaimosvyazannye ekstremalnye zadachi dlya tselykh funktsii mnogikh peremennykh”, Matem. zametki, 66:3 (1999), 336–350 | DOI | MR | Zbl
[4] D. V. Gorbachev, “Ekstremalnye zadachi dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa”, Matem. zametki, 68:2 (2000), 179–187 | DOI | MR | Zbl
[5] A. V. Ivanov, “Nekotorye ekstremalnye zadachi dlya tselykh funktsii v vesovykh prostranstvakh”, Izv. TulGU. Estestvennye nauki, 2010, no. 1, 26–44
[6] A. V. Ivanov, V. I. Ivanov, “Teorema Dzheksona v prostranstve $L_2(\mathbb{R}^d)$ so stepennym vesom”, Matem. zametki, 88:1 (2010), 148–151 | DOI | MR | Zbl
[7] A. V. Ivanov, V. I. Ivanov, “Teoriya Danklya i teorema Dzheksona v prostranstve $L_2(\mathbb R^d)$ so stepennym vesom”, Tr. IMM UrO RAN, 16, no. 4, 2010, 180–192
[8] A. V. Ivanov, “Zadacha Logana dlya tselykh funktsii mnogikh peremennykh i konstanty Dzheksona v vesovykh prostranstvakh”, Izv. TulGU. Estestvennye nauki, 2011, no. 2, 29–58
[9] A. V. Ivanov, V. I. Ivanov, “Optimalnye argumenty v neravenstve Dzheksona v prostranstve $L_2(\mathbb{R}^d)$ so stepennym vesom”, Matem. zametki, 94:3 (2013), 338–348 | DOI | MR | Zbl
[10] V. I. Ivanov, A. V. Ivanov, “Optimalnye argumenty v neravenstve Dzheksona–Stechkina v $L_2(\mathbb{R}^d)$ s vesom Danklya”, Matem. zametki, 96:5 (2014), 674–686 | DOI
[11] D. V. Gorbachev, V. I. Ivanov, R. A. Veprintsev, “Optimal Argument in the Sharp Jackson Inequality in the Space $L_2$ with Hyperbolic Weight”, Math. Notes, 96:6 (2014), 904–913 | DOI
[12] M. Flensted-Jensen, T. H. Koornwinder, “The convolution structure for Jacobi function expansions”, Ark. Mat., 11 (1973), 245–262 | DOI | MR | Zbl
[13] M. Flensted-Jensen, T. H. Koornwinder, “Jacobi functions: The addition formula and the positivity of dual convolution structure”, Ark. Mat., 17 (1979), 139–151 | DOI | MR | Zbl
[14] T. Koornwinder, “A new proof of a Paley–Wiener type theorem for the Jacobi transform”, Ark. Mat., 13 (1975), 145–159 | DOI | MR | Zbl
[15] B. M. Levitan, I. S. Sargsyan, Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR | Zbl
[16] N. P. Korneichuk, Ekstremalnye zadachi teorii priblizheniya, M., Nauka, 1976 | MR
[17] D. V. Gorbachev, Izbrannye zadachi teorii funktsii i teorii priblizhenii, Grif i K, Tula, 2005
[18] D. V. Gorbachev, V. I. Ivanov, “Kvadraturnye formuly Gaussa i Markova po nulyam funktsii Yakobi”, Sovremennye problemy matematiki, mekhaniki, informatiki, TulGU, Tula, 2014, 31–37
[19] V. I. Ivanov, Yunpin Lyu, O. I. Smirnov, “O nekotorykh klassakh tselykh funktsii eksponentsialnogo tipa v prostranstvakh $L_p(\mathbb{R}^d)$ so stepennym vesom”, Izv. TulGU. Estestvennye nauki, 2011, no. 2, 70–80
[20] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl
[21] V. A. Yudin, “Mnogomernaya teorema Dzheksona v $L_2$”, Matem. zametki, 29:2 (1981), 309–315 | MR | Zbl