Best Approximation Rate of Constants by Simple Partial Fractions and Chebyshev Alternance
Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 718-732

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of interpolation and best uniform approximation of constants $c\ne 0$ by simple partial fractions $\rho_n$ of order $n$ on an interval $[a,b]$. (All functions and numbers considered are real.) For the case in which $n>4|c|(b-a)$, we prove that the interpolation problem is uniquely solvable, obtain upper and lower bounds, sharp in order $n$, for the interpolation error on the set of all interpolation points, and show that the poles of the interpolating fraction lie outside the disk with diameter $[a,b]$. We obtain an analog of Chebyshev's classical theorem on the minimum deviation of a monic polynomial of degree $n$ from a constant. Namely, we show that, for $n>4|c|(b-a)$, the best approximation fraction $\rho_n^*$ for the constant $c$ on $[a,b]$ is unique and can be characterized by the Chebyshev alternance of $n+1$ points for the difference $\rho_n^*-c$. For the minimum deviations, we obtain an estimate sharp in order $n$.
Keywords: best approximation of constants, simple partial fraction, Chebyshev alternance.
@article{MZM_2015_97_5_a6,
     author = {M. A. Komarov},
     title = {Best {Approximation} {Rate} of {Constants} by {Simple} {Partial} {Fractions} and {Chebyshev} {Alternance}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {718--732},
     publisher = {mathdoc},
     volume = {97},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a6/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - Best Approximation Rate of Constants by Simple Partial Fractions and Chebyshev Alternance
JO  - Matematičeskie zametki
PY  - 2015
SP  - 718
EP  - 732
VL  - 97
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a6/
LA  - ru
ID  - MZM_2015_97_5_a6
ER  - 
%0 Journal Article
%A M. A. Komarov
%T Best Approximation Rate of Constants by Simple Partial Fractions and Chebyshev Alternance
%J Matematičeskie zametki
%D 2015
%P 718-732
%V 97
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a6/
%G ru
%F MZM_2015_97_5_a6
M. A. Komarov. Best Approximation Rate of Constants by Simple Partial Fractions and Chebyshev Alternance. Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 718-732. http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a6/