Best Approximation Rate of Constants by Simple Partial Fractions and Chebyshev Alternance
Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 718-732.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of interpolation and best uniform approximation of constants $c\ne 0$ by simple partial fractions $\rho_n$ of order $n$ on an interval $[a,b]$. (All functions and numbers considered are real.) For the case in which $n>4|c|(b-a)$, we prove that the interpolation problem is uniquely solvable, obtain upper and lower bounds, sharp in order $n$, for the interpolation error on the set of all interpolation points, and show that the poles of the interpolating fraction lie outside the disk with diameter $[a,b]$. We obtain an analog of Chebyshev's classical theorem on the minimum deviation of a monic polynomial of degree $n$ from a constant. Namely, we show that, for $n>4|c|(b-a)$, the best approximation fraction $\rho_n^*$ for the constant $c$ on $[a,b]$ is unique and can be characterized by the Chebyshev alternance of $n+1$ points for the difference $\rho_n^*-c$. For the minimum deviations, we obtain an estimate sharp in order $n$.
Keywords: best approximation of constants, simple partial fraction, Chebyshev alternance.
@article{MZM_2015_97_5_a6,
     author = {M. A. Komarov},
     title = {Best {Approximation} {Rate} of {Constants} by {Simple} {Partial} {Fractions} and {Chebyshev} {Alternance}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {718--732},
     publisher = {mathdoc},
     volume = {97},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a6/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - Best Approximation Rate of Constants by Simple Partial Fractions and Chebyshev Alternance
JO  - Matematičeskie zametki
PY  - 2015
SP  - 718
EP  - 732
VL  - 97
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a6/
LA  - ru
ID  - MZM_2015_97_5_a6
ER  - 
%0 Journal Article
%A M. A. Komarov
%T Best Approximation Rate of Constants by Simple Partial Fractions and Chebyshev Alternance
%J Matematičeskie zametki
%D 2015
%P 718-732
%V 97
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a6/
%G ru
%F MZM_2015_97_5_a6
M. A. Komarov. Best Approximation Rate of Constants by Simple Partial Fractions and Chebyshev Alternance. Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 718-732. http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a6/

[1] V. I. Danchenko, D. Ya. Danchenko, “O ravnomernom priblizhenii logarifmicheskimi proizvodnymi mnogochlenov”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy shkoly-konferentsii, posvyaschennoi 130-letiyu so dnya rozhdeniya D. F. Egorova, Kazan, 1999, 74–77

[2] O. N. Kosukhin, “Ob approksimativnykh svoistvakh naiprosteishikh drobei”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2001, no. 4, 54–59 | MR | Zbl

[3] E. N. Kondakova, “Interpolyatsiya naiprosteishimi drobyami”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:2 (2009), 30–37

[4] V. I. Danchenko, E. N. Kondakova, “Kriterii vozniknoveniya osobykh uzlov pri interpolyatsii naiprosteishimi drobyami”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 278, MAIK, M., 2012, 49–58 | MR | Zbl

[5] V. I. Danchenko, E. N. Kondakova, “Chebyshevskii alternans pri approksimatsii konstant naiprosteishimi drobyami”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 270, MAIK, M., 2010, 86–96 | MR | Zbl

[6] M. A. Komarov, “Primery, svyazannye s nailuchshim priblizheniem naiprosteishimi drobyami”, Problemy matem. analiza, 65 (2012), 119–131 | MR | Zbl

[7] M. A. Komarov, “O needinstvennosti naiprosteishei drobi nailuchshego ravnomernogo priblizheniya”, Izv. vuzov. Matem., 2013, no. 9, 28–37 | Zbl

[8] M. A. Komarov, “Kriterii nailuchshego priblizheniya konstant naiprosteishimi drobyami”, Matem. zametki, 93:2 (2013), 209–215 | DOI | MR | Zbl

[9] M. A. Komarov, “Kriterii nailuchshego ravnomernogo priblizheniya naiprosteishimi drobyami v terminakh alternansa”, Izv. RAN. Ser. matem. (to appear)

[10] M. A. Komarov, “On the Analog of Chebyshev Theorem for Simple Partial Fractions”, Kompleksnyi analiz i ego prilozheniya, Materialy VII Petrozavodskoi mezhdunarodnoi konferentsii, Petrozavodsk, 2014, 65–69

[11] M. A. Komarov, “K zadache o edinstvennosti naiprosteishei drobi nailuchshego priblizheniya”, Problemy matem. analiza, 56 (2011), 63–82 | MR | Zbl

[12] M. A. Komarov, “O dostatochnom priznake nailuchshego ravnomernogo priblizheniya naiprosteishimi drobyami”, Problemy matem. analiza, 68 (2013), 133–139 | MR | Zbl

[13] A. J. Macintyre, W. H. J. Fuchs, “Inequalities for the logarithmic derivatives of a polynomial”, J. London Math. Soc. (3), 15 (1940), 162–168 | DOI | MR | Zbl

[14] N. S. Bakhvalov, Chislennye metody (analiz, algebra, obyknovennye differentsialnye uravneniya), Nauka, M., 1973 | MR | Zbl

[15] N. N. Lebedev, Spetsialnye funktsii i ikh prilozheniya, Fizmatlit, M.–L., 1963 | MR | Zbl

[16] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl