On the Realization of Subgraphs of a Random Graph by Diameter Graphs in Euclidean Spaces
Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 699-717
Voir la notice de l'article provenant de la source Math-Net.Ru
The present paper is motivated by Borsuk's classical problem of the partition of sets in spaces into parts of smaller diameter. We obtain sharp estimates for the maximal number of vertices of the induced subgraph of a random graph that, with high probability, is isomorphic to the diameter graph with given chromatic number in a space of any fixed dimension.
Keywords:
random graph, diameter graph, Euclidean space, Borsuk problem, chromatic number, independence number.
@article{MZM_2015_97_5_a5,
author = {A. A. Kokotkin and A. M. Raigorodskii},
title = {On the {Realization} of {Subgraphs} of a {Random} {Graph} by {Diameter} {Graphs} in {Euclidean} {Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {699--717},
publisher = {mathdoc},
volume = {97},
number = {5},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a5/}
}
TY - JOUR AU - A. A. Kokotkin AU - A. M. Raigorodskii TI - On the Realization of Subgraphs of a Random Graph by Diameter Graphs in Euclidean Spaces JO - Matematičeskie zametki PY - 2015 SP - 699 EP - 717 VL - 97 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a5/ LA - ru ID - MZM_2015_97_5_a5 ER -
A. A. Kokotkin; A. M. Raigorodskii. On the Realization of Subgraphs of a Random Graph by Diameter Graphs in Euclidean Spaces. Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 699-717. http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a5/