Mots-clés : Lebesgue space $L_p(0,1)$, Carathéodory conditions.
@article{MZM_2015_97_5_a0,
author = {S. N. Askhabov},
title = {Nonlinear {Convolution-Type} {Equations} in {Lebesgue} {Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {643--654},
year = {2015},
volume = {97},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a0/}
}
S. N. Askhabov. Nonlinear Convolution-Type Equations in Lebesgue Spaces. Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 643-654. http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a0/
[1] S. N. Askhabov, Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009 | MR
[2] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR | Zbl
[3] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR | Zbl
[4] G. Kh. Khardi, V. V. Rogozinskii, Ryady Fure, Fizmatgiz, M., 1959 | MR | Zbl
[5] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl
[6] Y. Katznelson, An Introduction to Harmonic Analysis, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[7] H. Brézis, F. E. Browder, “Some new results about Hammerstein equations”, Bull. Amer. Math. Soc., 80:3 (1974), 567–572 | DOI | MR | Zbl
[8] S. N. Askhabov, “Primenenie metoda monotonnykh operatorov k nekotorym nelineinym uravneniyam tipa svertki i singulyarnym integralnym uravneniyam”, Izv. vuzov. Matem., 1981, no. 9, 64–66 | MR | Zbl
[9] S. N. Askhabov, Kh. Sh. Mukhtarov, “Ob odnom klasse nelineinykh integralnykh uravnenii tipa svertki”, Differents. uravneniya, 23:3 (1987), 512–514 | MR | Zbl
[10] S. N. Askhabov, “Nonlinear singular integral equations in Lebesgue spaces”, J. Math. Sci., 173:2 (2011), 155–171 | DOI | MR | Zbl
[11] S. N. Askhabov, M. A. Betilgiriev, “Apriornye otsenki reshenii odnogo nelineinogo integralnogo uravneniya tipa svertki i ikh prilozheniya”, Matem. zametki, 54:5 (1993), 3–12 | MR | Zbl