Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_5_a0, author = {S. N. Askhabov}, title = {Nonlinear {Convolution-Type} {Equations} in {Lebesgue} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {643--654}, publisher = {mathdoc}, volume = {97}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a0/} }
S. N. Askhabov. Nonlinear Convolution-Type Equations in Lebesgue Spaces. Matematičeskie zametki, Tome 97 (2015) no. 5, pp. 643-654. http://geodesic.mathdoc.fr/item/MZM_2015_97_5_a0/
[1] S. N. Askhabov, Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009 | MR
[2] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR | Zbl
[3] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR | Zbl
[4] G. Kh. Khardi, V. V. Rogozinskii, Ryady Fure, Fizmatgiz, M., 1959 | MR | Zbl
[5] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl
[6] Y. Katznelson, An Introduction to Harmonic Analysis, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[7] H. Brézis, F. E. Browder, “Some new results about Hammerstein equations”, Bull. Amer. Math. Soc., 80:3 (1974), 567–572 | DOI | MR | Zbl
[8] S. N. Askhabov, “Primenenie metoda monotonnykh operatorov k nekotorym nelineinym uravneniyam tipa svertki i singulyarnym integralnym uravneniyam”, Izv. vuzov. Matem., 1981, no. 9, 64–66 | MR | Zbl
[9] S. N. Askhabov, Kh. Sh. Mukhtarov, “Ob odnom klasse nelineinykh integralnykh uravnenii tipa svertki”, Differents. uravneniya, 23:3 (1987), 512–514 | MR | Zbl
[10] S. N. Askhabov, “Nonlinear singular integral equations in Lebesgue spaces”, J. Math. Sci., 173:2 (2011), 155–171 | DOI | MR | Zbl
[11] S. N. Askhabov, M. A. Betilgiriev, “Apriornye otsenki reshenii odnogo nelineinogo integralnogo uravneniya tipa svertki i ikh prilozheniya”, Matem. zametki, 54:5 (1993), 3–12 | MR | Zbl