Nonexistence of Global Solutions for Quasilinear Backward Parabolic Inequalities with $p$-Laplace-Type Operator
Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 591-603.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the nonexistence of global solutions to the quasilinear backward parabolic inequality $$ u_{t}+\operatorname{div}(|x|^{\alpha}|u|^{\beta}|Du|^{p-2}Du) \ge |x|^{\gamma}|u|^{q-1}u,\qquad x\in\Omega,\quad t\ge 0 $$ with homogeneous Dirichlet boundary condition and bounded integrable sign-changing initial function, where $\Omega$ is a bounded smooth domain in $\mathbb{R}^N$. The proof is based on the derivation of a priori estimates for the solutions and involves the algebraic analysis of the integral form of the inequality with an optimal choice of test functions. We establish conditions for the nonexistence of solutions based on the weak formulation of the problem with test functions of the form $$ \phi_{R,\epsilon}(x,t)=(\pm u^{\pm}(x,t)+\epsilon)^{\delta} \varphi_{R}(x,t)\qquad\text{for}\quad \epsilon>0,\quad \delta>0, $$ where $u^{+}$ and $u^{-}$ are the positive and negative parts of the solution $u$ of the problem and $\varphi_{R}$ is the standard cut-off function whose support depends on the parameter $R$.
Keywords: quasilinear backward parabolic inequality, $p$-Laplace-type operator, Dirichlet boundary condition, Young's inequality, Fatou theorem, Hölder's inequality.
@article{MZM_2015_97_4_a8,
     author = {B. Tsegau},
     title = {Nonexistence of {Global} {Solutions} for {Quasilinear} {Backward} {Parabolic} {Inequalities} with $p${-Laplace-Type} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {591--603},
     publisher = {mathdoc},
     volume = {97},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a8/}
}
TY  - JOUR
AU  - B. Tsegau
TI  - Nonexistence of Global Solutions for Quasilinear Backward Parabolic Inequalities with $p$-Laplace-Type Operator
JO  - Matematičeskie zametki
PY  - 2015
SP  - 591
EP  - 603
VL  - 97
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a8/
LA  - ru
ID  - MZM_2015_97_4_a8
ER  - 
%0 Journal Article
%A B. Tsegau
%T Nonexistence of Global Solutions for Quasilinear Backward Parabolic Inequalities with $p$-Laplace-Type Operator
%J Matematičeskie zametki
%D 2015
%P 591-603
%V 97
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a8/
%G ru
%F MZM_2015_97_4_a8
B. Tsegau. Nonexistence of Global Solutions for Quasilinear Backward Parabolic Inequalities with $p$-Laplace-Type Operator. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 591-603. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a8/

[1] L. Ma, “Blow-up for semilinear parabolic equations with critical Sobolev exponent”, Commun. Pure Appl. Anal., 12:2 (2013), 1103–1110 | MR | Zbl

[2] M. Fila, P. Souplet, “The blow-up rate for semilinear parabolic problems on general domains”, NoDEA Nonlinear Differential Equations Appl., 8:4 (2001), 473–480 | MR | Zbl

[3] F. Gazzola, T. Weth, “Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level”, Differential Integral Equations, 18:9 (2005), 961–990 | MR | Zbl

[4] S. I. Pokhozhaev, “Otsutstvie globalnykh znakoperemennykh reshenii nelineinogo uravneniya teploprovodnosti”, Dokl. RAN, 443:3 (2012), 296–299 | MR | Zbl

[5] V. Galaktionov, J. L. Vazquez, “Extinction for a quasilinear heat equation with absorption. I. Technique of intersection comparison”, Comm. Partial Differential Equations, 19:7-8 (1994), 1075–1106 | DOI | MR | Zbl

[6] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR | Zbl

[7] G. Wei, Z. Chen, “Nonexistence of global positive solutions for quasi-linear parabolic inequalities”, J. Univ. Sci. Technol. China, 34:3 (2004), 273–282 | MR | Zbl

[8] P. Poláčik, P. Quittner, “A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation”, Nonlinear Anal., 64:8 (2006), 1679–1689 | DOI | MR | Zbl

[9] F. Gazzola, H.-C. Grunau, “Global solutions for superlinear parabolic equations involving the biharmonic operator for initial data with optimal slow decay”, Calc. Var. Partial Differential Equations, 30:3 (2007), 389–415 | MR | Zbl

[10] G. Caristi, E. Mitidieri, “Existence and nonexistence of global solutions of higher-order parabolic problem with slow decay initial data”, J. Math. Anal. Appl., 279:2 (2003), 710–722 | DOI | MR | Zbl

[11] G. Cai, H. Pan, R. Xing, “A note on parabolic Liouville theorems and blow-up rates for a higher-order semilinear parabolic system”, Int. J. Differ. Equ., 2011 (2011), Art. ID 896427 | MR | Zbl

[12] O. Zubelevich, On Weakly Nonlinear Backward Parabolic Problem, Mathematical Physics Preprint Archive, No09-28, 2009