Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_4_a8, author = {B. Tsegau}, title = {Nonexistence of {Global} {Solutions} for {Quasilinear} {Backward} {Parabolic} {Inequalities} with $p${-Laplace-Type} {Operator}}, journal = {Matemati\v{c}eskie zametki}, pages = {591--603}, publisher = {mathdoc}, volume = {97}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a8/} }
TY - JOUR AU - B. Tsegau TI - Nonexistence of Global Solutions for Quasilinear Backward Parabolic Inequalities with $p$-Laplace-Type Operator JO - Matematičeskie zametki PY - 2015 SP - 591 EP - 603 VL - 97 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a8/ LA - ru ID - MZM_2015_97_4_a8 ER -
B. Tsegau. Nonexistence of Global Solutions for Quasilinear Backward Parabolic Inequalities with $p$-Laplace-Type Operator. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 591-603. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a8/
[1] L. Ma, “Blow-up for semilinear parabolic equations with critical Sobolev exponent”, Commun. Pure Appl. Anal., 12:2 (2013), 1103–1110 | MR | Zbl
[2] M. Fila, P. Souplet, “The blow-up rate for semilinear parabolic problems on general domains”, NoDEA Nonlinear Differential Equations Appl., 8:4 (2001), 473–480 | MR | Zbl
[3] F. Gazzola, T. Weth, “Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level”, Differential Integral Equations, 18:9 (2005), 961–990 | MR | Zbl
[4] S. I. Pokhozhaev, “Otsutstvie globalnykh znakoperemennykh reshenii nelineinogo uravneniya teploprovodnosti”, Dokl. RAN, 443:3 (2012), 296–299 | MR | Zbl
[5] V. Galaktionov, J. L. Vazquez, “Extinction for a quasilinear heat equation with absorption. I. Technique of intersection comparison”, Comm. Partial Differential Equations, 19:7-8 (1994), 1075–1106 | DOI | MR | Zbl
[6] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR | Zbl
[7] G. Wei, Z. Chen, “Nonexistence of global positive solutions for quasi-linear parabolic inequalities”, J. Univ. Sci. Technol. China, 34:3 (2004), 273–282 | MR | Zbl
[8] P. Poláčik, P. Quittner, “A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation”, Nonlinear Anal., 64:8 (2006), 1679–1689 | DOI | MR | Zbl
[9] F. Gazzola, H.-C. Grunau, “Global solutions for superlinear parabolic equations involving the biharmonic operator for initial data with optimal slow decay”, Calc. Var. Partial Differential Equations, 30:3 (2007), 389–415 | MR | Zbl
[10] G. Caristi, E. Mitidieri, “Existence and nonexistence of global solutions of higher-order parabolic problem with slow decay initial data”, J. Math. Anal. Appl., 279:2 (2003), 710–722 | DOI | MR | Zbl
[11] G. Cai, H. Pan, R. Xing, “A note on parabolic Liouville theorems and blow-up rates for a higher-order semilinear parabolic system”, Int. J. Differ. Equ., 2011 (2011), Art. ID 896427 | MR | Zbl
[12] O. Zubelevich, On Weakly Nonlinear Backward Parabolic Problem, Mathematical Physics Preprint Archive, No09-28, 2009