The Structure of the Hopf Cyclic (Co)Homology of Algebras of Smooth Functions
Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 566-582.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses the structure of the Hopf cyclic homology and cohomology of the algebra of smooth functions on a manifold provided that the algebra is endowed with an action or a coaction of the algebra of Hopf functions on a finite or compact group or of the Hopf algebra dual to it. In both cases, an analog of the Connes–Hochschild–Kostant–Rosenberg theorem describing the structure of Hopf cyclic cohomology in terms of equivariant cohomology and other more geometric cohomology groups is proved.
Keywords: Hopf cyclic homology with coefficients, Hopf cyclic cohomology with coefficients, algebra of smooth functions on a manifold, Hopf algebra of functions on a group, Hopf cyclic complex, equivariant cohomology
Mots-clés : module of sections.
@article{MZM_2015_97_4_a6,
     author = {I. M. Nikonov and G. I. Sharygin},
     title = {The {Structure} of the {Hopf} {Cyclic} {(Co)Homology} of {Algebras} of {Smooth} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {566--582},
     publisher = {mathdoc},
     volume = {97},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a6/}
}
TY  - JOUR
AU  - I. M. Nikonov
AU  - G. I. Sharygin
TI  - The Structure of the Hopf Cyclic (Co)Homology of Algebras of Smooth Functions
JO  - Matematičeskie zametki
PY  - 2015
SP  - 566
EP  - 582
VL  - 97
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a6/
LA  - ru
ID  - MZM_2015_97_4_a6
ER  - 
%0 Journal Article
%A I. M. Nikonov
%A G. I. Sharygin
%T The Structure of the Hopf Cyclic (Co)Homology of Algebras of Smooth Functions
%J Matematičeskie zametki
%D 2015
%P 566-582
%V 97
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a6/
%G ru
%F MZM_2015_97_4_a6
I. M. Nikonov; G. I. Sharygin. The Structure of the Hopf Cyclic (Co)Homology of Algebras of Smooth Functions. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 566-582. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a6/

[1] A. Connes, H. Moscovici, “Hopf algebras, cyclic cohomology and the transverse index theorem”, Comm. Math. Phys., 198:1 (1998), 199–246 | DOI | MR | Zbl

[2] M. Crainic, “Cyclic cohomology of Hopf algebras”, J. Pure Appl. Algebra, 166:1-2 (2002), 29–66 | DOI | MR | Zbl

[3] P. M. Hajac, M. Khalkali, B. Rangipour, M. Sommerhäuser, “Hopf cyclic homology and cohomology with coefficients.”, C. R. Math. Acad. Sci. Paris, 338:9 (2004), 667–672 | DOI | MR | Zbl

[4] A. Kaygun, “Bialgebra cyclic homology with coefficients”, $K$-Theory, 34:2 (2005), 151–194 | MR | Zbl

[5] J. Block, E. Getzler, “Equivariant cyclic homology and equiavraint differential forms”, Ann. Sci. École Norm. Sup. (4), 27:4 (1994), 493–527 | MR | Zbl

[6] M. E. Sweedler, Hopf Algebras, W. A. Benjamin, New York, 1969 | MR | Zbl

[7] J.-L. Loday, Cyclic Homology, Grundlehren Math. Wiss., 301, Springer-Verlag, Berlin, 1992 | MR | Zbl

[8] P. Baum, P. Schneider, “Equivariant-bivariant Chern character for profinite groups”, $K$-Theory, 25:4 (2002), 313–353 | MR | Zbl

[9] J. M. Gracia-Bondía, J. C. Várilly, H. Figueroa, Elements of Noncommutative Geometry, Birkhäuser Boston, Boston, MA, 2001 | MR | Zbl