Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_4_a6, author = {I. M. Nikonov and G. I. Sharygin}, title = {The {Structure} of the {Hopf} {Cyclic} {(Co)Homology} of {Algebras} of {Smooth} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {566--582}, publisher = {mathdoc}, volume = {97}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a6/} }
TY - JOUR AU - I. M. Nikonov AU - G. I. Sharygin TI - The Structure of the Hopf Cyclic (Co)Homology of Algebras of Smooth Functions JO - Matematičeskie zametki PY - 2015 SP - 566 EP - 582 VL - 97 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a6/ LA - ru ID - MZM_2015_97_4_a6 ER -
I. M. Nikonov; G. I. Sharygin. The Structure of the Hopf Cyclic (Co)Homology of Algebras of Smooth Functions. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 566-582. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a6/
[1] A. Connes, H. Moscovici, “Hopf algebras, cyclic cohomology and the transverse index theorem”, Comm. Math. Phys., 198:1 (1998), 199–246 | DOI | MR | Zbl
[2] M. Crainic, “Cyclic cohomology of Hopf algebras”, J. Pure Appl. Algebra, 166:1-2 (2002), 29–66 | DOI | MR | Zbl
[3] P. M. Hajac, M. Khalkali, B. Rangipour, M. Sommerhäuser, “Hopf cyclic homology and cohomology with coefficients.”, C. R. Math. Acad. Sci. Paris, 338:9 (2004), 667–672 | DOI | MR | Zbl
[4] A. Kaygun, “Bialgebra cyclic homology with coefficients”, $K$-Theory, 34:2 (2005), 151–194 | MR | Zbl
[5] J. Block, E. Getzler, “Equivariant cyclic homology and equiavraint differential forms”, Ann. Sci. École Norm. Sup. (4), 27:4 (1994), 493–527 | MR | Zbl
[6] M. E. Sweedler, Hopf Algebras, W. A. Benjamin, New York, 1969 | MR | Zbl
[7] J.-L. Loday, Cyclic Homology, Grundlehren Math. Wiss., 301, Springer-Verlag, Berlin, 1992 | MR | Zbl
[8] P. Baum, P. Schneider, “Equivariant-bivariant Chern character for profinite groups”, $K$-Theory, 25:4 (2002), 313–353 | MR | Zbl
[9] J. M. Gracia-Bondía, J. C. Várilly, H. Figueroa, Elements of Noncommutative Geometry, Birkhäuser Boston, Boston, MA, 2001 | MR | Zbl