The Structure of the Hopf Cyclic (Co)Homology of Algebras of Smooth Functions
Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 566-582
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper discusses the structure of the Hopf cyclic homology and cohomology of the algebra of smooth functions on a manifold provided that the algebra is endowed with an action or a coaction of the algebra of Hopf functions on a finite or compact group or of the Hopf algebra dual to it. In both cases, an analog of the Connes–Hochschild–Kostant–Rosenberg theorem describing the structure of Hopf cyclic cohomology in terms of equivariant cohomology and other more geometric cohomology groups is proved.
Keywords:
Hopf cyclic homology with coefficients, Hopf cyclic cohomology with coefficients, algebra of smooth functions on a manifold, Hopf algebra of functions on a group, Hopf cyclic complex, equivariant cohomology
Mots-clés : module of sections.
Mots-clés : module of sections.
@article{MZM_2015_97_4_a6,
author = {I. M. Nikonov and G. I. Sharygin},
title = {The {Structure} of the {Hopf} {Cyclic} {(Co)Homology} of {Algebras} of {Smooth} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {566--582},
publisher = {mathdoc},
volume = {97},
number = {4},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a6/}
}
TY - JOUR AU - I. M. Nikonov AU - G. I. Sharygin TI - The Structure of the Hopf Cyclic (Co)Homology of Algebras of Smooth Functions JO - Matematičeskie zametki PY - 2015 SP - 566 EP - 582 VL - 97 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a6/ LA - ru ID - MZM_2015_97_4_a6 ER -
I. M. Nikonov; G. I. Sharygin. The Structure of the Hopf Cyclic (Co)Homology of Algebras of Smooth Functions. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 566-582. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a6/