Symmetrized Version of the Markovecchio Integral in the Theory of Diophantine Approximations
Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 483-492.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new integral construction unifying the idea of symmetry proposed by Salikhov in 2007 and the integral introduced by Markovecchio in 2009 is considered. The application of this construction leads, in particular, to a sharper estimate of the measure of irrationality of the number $\pi/\sqrt{3}$.
Mots-clés : Diophantine approximation
Keywords: Markovecchio integral, Salikhov symmetrized integral, measure of irrationality, Gauss hypergeometric function, Kummer's formula.
@article{MZM_2015_97_4_a0,
     author = {V. A. Androsenko and V. Kh. Salikhov},
     title = {Symmetrized {Version} of the {Markovecchio} {Integral} in the {Theory} of {Diophantine} {Approximations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--492},
     publisher = {mathdoc},
     volume = {97},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a0/}
}
TY  - JOUR
AU  - V. A. Androsenko
AU  - V. Kh. Salikhov
TI  - Symmetrized Version of the Markovecchio Integral in the Theory of Diophantine Approximations
JO  - Matematičeskie zametki
PY  - 2015
SP  - 483
EP  - 492
VL  - 97
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a0/
LA  - ru
ID  - MZM_2015_97_4_a0
ER  - 
%0 Journal Article
%A V. A. Androsenko
%A V. Kh. Salikhov
%T Symmetrized Version of the Markovecchio Integral in the Theory of Diophantine Approximations
%J Matematičeskie zametki
%D 2015
%P 483-492
%V 97
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a0/
%G ru
%F MZM_2015_97_4_a0
V. A. Androsenko; V. Kh. Salikhov. Symmetrized Version of the Markovecchio Integral in the Theory of Diophantine Approximations. Matematičeskie zametki, Tome 97 (2015) no. 4, pp. 483-492. http://geodesic.mathdoc.fr/item/MZM_2015_97_4_a0/

[1] V. Kh. Salikhov, “O mere irratsionalnosti $\log3$”, Dokl. RAN, 417:6 (2007), 753–755 | MR | Zbl

[2] V. Kh. Salikhov, “O mere irratsionalnosti chisla $\pi$”, Matem. zametki, 88:4 (2010), 583–593 | DOI | MR | Zbl

[3] R. Marcovecchio, “The Rhin–Viola method for $\log 2$”, Acta Arith., 139:2 (2009), 147–184 | MR | Zbl

[4] G. Rhin, C. Viola, “On a permutation group related to $\zeta(2)$”, Acta Arith., 77:1 (1996), 23–56 | MR | Zbl

[5] G. Rhin, C. Viola, “The group structure for $\zeta(3)$”, Acta Arith., 97:3 (2001), 269–293 | MR | Zbl

[6] Yu. V. Nesterenko, “O pokazatele irratsionalnosti chisla $\ln2$”, Matem. zametki, 88:4 (2010), 549–564 | DOI | MR | Zbl

[7] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1973 | MR | Zbl