Estimates of $L^p$-Oscillations of Functions for $p>0$
Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 407-420
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a number of inequalities for the mean oscillations $$ \mathcal{O}_{\theta}(f,B,I)=\biggl(\frac{1}{\mu(B)} \int_B |f(y)-I|^\theta\,d\mu(y)\biggr)^{1/\theta}, $$ where $\theta>0$, $B$ is a ball in a metric space with measure $\mu$ satisfying the doubling condition, and the number $I$ is chosen in one of the following ways: $I=f(x)$ ($x\in B$), $I$ is the mean value of the function $f$ over the ball $B$, and $I$ is the best approximation of $f$ by constants in the metric of $L^{\theta}(B)$. These inequalities are used to obtain $L^p$-estimates ($p>0$) of the maximal operators measuring local smoothness, to describe Sobolev-type spaces, and to study the self-improvement property of Poincaré–Sobolev-type inequalities.
Keywords:
$L^p$-oscillations of functions, Sobolev and Hajłasz–Sobolev classes,
Poincaré–Sobolev inequalities.
Mots-clés : $\theta$-Lebesgue points
Mots-clés : $\theta$-Lebesgue points
@article{MZM_2015_97_3_a8,
author = {V. G. Krotov and A. I. Porabkovich},
title = {Estimates of $L^p${-Oscillations} of {Functions} for $p>0$},
journal = {Matemati\v{c}eskie zametki},
pages = {407--420},
publisher = {mathdoc},
volume = {97},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a8/}
}
V. G. Krotov; A. I. Porabkovich. Estimates of $L^p$-Oscillations of Functions for $p>0$. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 407-420. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a8/