Estimates of $L^p$-Oscillations of Functions for $p>0$
Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 407-420

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a number of inequalities for the mean oscillations $$ \mathcal{O}_{\theta}(f,B,I)=\biggl(\frac{1}{\mu(B)} \int_B |f(y)-I|^\theta\,d\mu(y)\biggr)^{1/\theta}, $$ where $\theta>0$, $B$ is a ball in a metric space with measure $\mu$ satisfying the doubling condition, and the number $I$ is chosen in one of the following ways: $I=f(x)$ ($x\in B$), $I$ is the mean value of the function $f$ over the ball $B$, and $I$ is the best approximation of $f$ by constants in the metric of $L^{\theta}(B)$. These inequalities are used to obtain $L^p$-estimates ($p>0$) of the maximal operators measuring local smoothness, to describe Sobolev-type spaces, and to study the self-improvement property of Poincaré–Sobolev-type inequalities.
Keywords: $L^p$-oscillations of functions, Sobolev and Hajłasz–Sobolev classes, Poincaré–Sobolev inequalities.
Mots-clés : $\theta$-Lebesgue points
@article{MZM_2015_97_3_a8,
     author = {V. G. Krotov and A. I. Porabkovich},
     title = {Estimates of $L^p${-Oscillations} of {Functions} for $p>0$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {407--420},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a8/}
}
TY  - JOUR
AU  - V. G. Krotov
AU  - A. I. Porabkovich
TI  - Estimates of $L^p$-Oscillations of Functions for $p>0$
JO  - Matematičeskie zametki
PY  - 2015
SP  - 407
EP  - 420
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a8/
LA  - ru
ID  - MZM_2015_97_3_a8
ER  - 
%0 Journal Article
%A V. G. Krotov
%A A. I. Porabkovich
%T Estimates of $L^p$-Oscillations of Functions for $p>0$
%J Matematičeskie zametki
%D 2015
%P 407-420
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a8/
%G ru
%F MZM_2015_97_3_a8
V. G. Krotov; A. I. Porabkovich. Estimates of $L^p$-Oscillations of Functions for $p>0$. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 407-420. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a8/