Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_3_a8, author = {V. G. Krotov and A. I. Porabkovich}, title = {Estimates of $L^p${-Oscillations} of {Functions} for $p>0$}, journal = {Matemati\v{c}eskie zametki}, pages = {407--420}, publisher = {mathdoc}, volume = {97}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a8/} }
V. G. Krotov; A. I. Porabkovich. Estimates of $L^p$-Oscillations of Functions for $p>0$. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 407-420. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a8/
[1] L. K. Evans, R. F. Gariepi, Teoriya mery i tonkie svoistva funktsii, Universitetskaya seriya, 9, Nauchnaya kniga, Novosibirsk, 2002 | MR | Zbl
[2] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl
[3] A. P. Calderón, “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44 (1972), 563–582 | MR | Zbl
[4] A. P. Calderón, R. Scott, “Sobolev type inequalities for $p > 0$”, Studia Math., 62 (1978), 75–92 | MR | Zbl
[5] C. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129:3-4 (1972), 137–193 | DOI | MR | Zbl
[6] V. I. Kolyada, “Otsenki maksimalnykh funktsii, svyazannykh s lokalnoi gladkostyu”, Dokl. AN SSSR, 293:4 (1987), 534–537 | MR | Zbl
[7] V. I. Kolyada, “Estimates of maximal functions measuring local smoothness”, Anal. Math., 25:4 (1999), 277–300 | DOI | MR | Zbl
[8] K. I. Oskolkov, “Approksimativnye svoistva summiruemykh funktsii na mnozhestvakh polnoi mery”, Matem. sb., 103:4 (1977), 563–589 | MR | Zbl
[9] V. G. Krotov, “Maximal Functions Measuring Smoothness”, Springer Proc. Math. Stat., 25, Springer, New York, 2013, 197–223 | MR | Zbl
[10] R. R. Coifman, G. Weiss, Analyse Hamonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math., 242, Springer-Verlag, Berlin, 1971 | DOI | MR
[11] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, Berlin, 2001 | MR | Zbl
[12] I. A. Ivanishko, V. G. Krotov, “Obobschennoe neravenstvo Puankare–Soboleva na metricheskikh prostranstvakh”, Tr. In-ta matem., 14:1 (2006), 51–61
[13] V. G. Krotov, “Kolichestvennaya forma $C$-voistva Luzina”, Ukr. matem. zhurn., 62:3 (2010), 387–395 | MR | Zbl
[14] V. G. Krotov, “Kriterii kompaktnosti v prostranstvakh $L^p$, $p\ge0$”, Matem. sb., 203:7 (2012), 129–148 | DOI | MR | Zbl
[15] P. Hajłasz, P. Koskela, “Sobolev met Poincaré”, Mem. Amer. Math. Soc., 145, no. 688 (2000), Amer. Math. Soc., Providence, RI | MR | Zbl
[16] P. Hajłasz, “Sobolev spaces on an arbitrary metric spaces”, Potential Anal., 5:4 (1996), 403–415 | MR | Zbl
[17] I. A. Ivanishko, “Obobschennye klassy Soboleva na metricheskikh prostranstvakh s meroi”, Matem. zametki, 77:6 (2005), 937–941 | DOI | MR | Zbl