Estimates of $L^p$-Oscillations of Functions for $p>0$
Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 407-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a number of inequalities for the mean oscillations $$ \mathcal{O}_{\theta}(f,B,I)=\biggl(\frac{1}{\mu(B)} \int_B |f(y)-I|^\theta\,d\mu(y)\biggr)^{1/\theta}, $$ where $\theta>0$, $B$ is a ball in a metric space with measure $\mu$ satisfying the doubling condition, and the number $I$ is chosen in one of the following ways: $I=f(x)$ ($x\in B$), $I$ is the mean value of the function $f$ over the ball $B$, and $I$ is the best approximation of $f$ by constants in the metric of $L^{\theta}(B)$. These inequalities are used to obtain $L^p$-estimates ($p>0$) of the maximal operators measuring local smoothness, to describe Sobolev-type spaces, and to study the self-improvement property of Poincaré–Sobolev-type inequalities.
Keywords: $L^p$-oscillations of functions, Sobolev and Hajłasz–Sobolev classes, Poincaré–Sobolev inequalities.
Mots-clés : $\theta$-Lebesgue points
@article{MZM_2015_97_3_a8,
     author = {V. G. Krotov and A. I. Porabkovich},
     title = {Estimates of $L^p${-Oscillations} of {Functions} for $p>0$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {407--420},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a8/}
}
TY  - JOUR
AU  - V. G. Krotov
AU  - A. I. Porabkovich
TI  - Estimates of $L^p$-Oscillations of Functions for $p>0$
JO  - Matematičeskie zametki
PY  - 2015
SP  - 407
EP  - 420
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a8/
LA  - ru
ID  - MZM_2015_97_3_a8
ER  - 
%0 Journal Article
%A V. G. Krotov
%A A. I. Porabkovich
%T Estimates of $L^p$-Oscillations of Functions for $p>0$
%J Matematičeskie zametki
%D 2015
%P 407-420
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a8/
%G ru
%F MZM_2015_97_3_a8
V. G. Krotov; A. I. Porabkovich. Estimates of $L^p$-Oscillations of Functions for $p>0$. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 407-420. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a8/

[1] L. K. Evans, R. F. Gariepi, Teoriya mery i tonkie svoistva funktsii, Universitetskaya seriya, 9, Nauchnaya kniga, Novosibirsk, 2002 | MR | Zbl

[2] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[3] A. P. Calderón, “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44 (1972), 563–582 | MR | Zbl

[4] A. P. Calderón, R. Scott, “Sobolev type inequalities for $p > 0$”, Studia Math., 62 (1978), 75–92 | MR | Zbl

[5] C. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129:3-4 (1972), 137–193 | DOI | MR | Zbl

[6] V. I. Kolyada, “Otsenki maksimalnykh funktsii, svyazannykh s lokalnoi gladkostyu”, Dokl. AN SSSR, 293:4 (1987), 534–537 | MR | Zbl

[7] V. I. Kolyada, “Estimates of maximal functions measuring local smoothness”, Anal. Math., 25:4 (1999), 277–300 | DOI | MR | Zbl

[8] K. I. Oskolkov, “Approksimativnye svoistva summiruemykh funktsii na mnozhestvakh polnoi mery”, Matem. sb., 103:4 (1977), 563–589 | MR | Zbl

[9] V. G. Krotov, “Maximal Functions Measuring Smoothness”, Springer Proc. Math. Stat., 25, Springer, New York, 2013, 197–223 | MR | Zbl

[10] R. R. Coifman, G. Weiss, Analyse Hamonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math., 242, Springer-Verlag, Berlin, 1971 | DOI | MR

[11] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, Berlin, 2001 | MR | Zbl

[12] I. A. Ivanishko, V. G. Krotov, “Obobschennoe neravenstvo Puankare–Soboleva na metricheskikh prostranstvakh”, Tr. In-ta matem., 14:1 (2006), 51–61

[13] V. G. Krotov, “Kolichestvennaya forma $C$-voistva Luzina”, Ukr. matem. zhurn., 62:3 (2010), 387–395 | MR | Zbl

[14] V. G. Krotov, “Kriterii kompaktnosti v prostranstvakh $L^p$, $p\ge0$”, Matem. sb., 203:7 (2012), 129–148 | DOI | MR | Zbl

[15] P. Hajłasz, P. Koskela, “Sobolev met Poincaré”, Mem. Amer. Math. Soc., 145, no. 688 (2000), Amer. Math. Soc., Providence, RI | MR | Zbl

[16] P. Hajłasz, “Sobolev spaces on an arbitrary metric spaces”, Potential Anal., 5:4 (1996), 403–415 | MR | Zbl

[17] I. A. Ivanishko, “Obobschennye klassy Soboleva na metricheskikh prostranstvakh s meroi”, Matem. zametki, 77:6 (2005), 937–941 | DOI | MR | Zbl