Uniqueness Theorem for Additive Functions and Its Applications to Orthogonal Series
Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 382-396.

Voir la notice de l'article provenant de la source Math-Net.Ru

The subject of this paper is the recovery of an additive function defined on $\mathcal P$-adic parallelepipeds from its derivative with respect to $\mathcal P$-adic parallelepipeds. The resulting theorem is applied to the study of the uniqueness problem for multiple series with respect to the Haar and Price systems.
Keywords: additive function, Haar system, Price system, uniqueness problem, multiple series, recovery of an additive function from its derivative, $\mathcal P$-adic parallelepiped, $A$-integral.
@article{MZM_2015_97_3_a6,
     author = {K. A. Kerian},
     title = {Uniqueness {Theorem} for {Additive} {Functions} and {Its} {Applications} to {Orthogonal} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {382--396},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a6/}
}
TY  - JOUR
AU  - K. A. Kerian
TI  - Uniqueness Theorem for Additive Functions and Its Applications to Orthogonal Series
JO  - Matematičeskie zametki
PY  - 2015
SP  - 382
EP  - 396
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a6/
LA  - ru
ID  - MZM_2015_97_3_a6
ER  - 
%0 Journal Article
%A K. A. Kerian
%T Uniqueness Theorem for Additive Functions and Its Applications to Orthogonal Series
%J Matematičeskie zametki
%D 2015
%P 382-396
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a6/
%G ru
%F MZM_2015_97_3_a6
K. A. Kerian. Uniqueness Theorem for Additive Functions and Its Applications to Orthogonal Series. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 382-396. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a6/

[1] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[2] A. B. Aleksandrov, “Ob $A$-integriruemosti granichnykh znachenii garmonicheskikh funktsii”, Matem. zametki, 30:1 (1981), 59–72 | MR | Zbl

[3] G. G. Gevorkyan, “O edinstvennosti trigonometricheskikh ryadov”, Matem. sb., 180:11 (1989), 1462–1474 | MR | Zbl

[4] G. G. Gevorkyan, “O edinstvennosti kratnykh trigonometricheskikh ryadov”, Matem. sb., 184:11 (1993), 93–130 | MR | Zbl

[5] S. M. Galstyan, “O edinstvennosti additivnykh funktsii segmenta i trigonometricheskikh ryadov”, Matem. zametki, 56:4 (1994), 38–47 | MR | Zbl

[6] G. G. Gevorkyan, “O edinstvennosti dvoichnykh kubov i ryadov po sisteme Khaara”, Izv. NAN Armenii. Matem., 30:5 (1995), 7–21 | MR | Zbl

[7] V. V. Kostin, “K voprosu o vosstanovlenii koeffitsientov ryadov po nekotorym ortogonalnym sistemam funktsii”, Matem. zametki, 73:5 (2003), 704–723 | DOI | MR | Zbl

[8] K. Yoneda, “On generalized A-integrals. I”, Proc. Japan Acad., 45:3 (1969), 159–163 | DOI | MR | Zbl

[9] K. Yoneda, “On generalized $(A)$-integrals. II”, Math. Japon., 18:2 (1973), 149–167 | MR | Zbl

[10] R. F. Gundy, “Martingale theory and pointwise convergence of certain orthogonal series”, Trans. Amer. Math. Soc., 124:2 (1966), 228–248 | DOI | MR | Zbl

[11] Y. S. Chow, “Convergence theorems of martingales”, Z. Wahrsch. und Verw. Gebiete, 1:4 (1963), 340–346 | DOI | MR | Zbl

[12] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl

[13] V. A. Skvortsov, “O nul ryadakh po nekotoroi multiplikativnoi sisteme”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1979, no. 6, 63–67 | MR | Zbl