New Upper Bound for the Chromatic Number\\ of a~Random Subgraph of a~Distance Graph
Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 342-349

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is related to the classical Hadwiger–Nelson problem dealing with the chromatic numbers of distance graphs in ${\mathbb R}^n$. We consider the class consisting of the graphs $G(n,2s+1,s)=(V(n,2s+1), E(n,2s+1,s))$ defined as follows: \begin{align*} V(n,2s+1)=\{x=(x_1,x_2,\dots,x_n): x_i\in \{0,1\}, \, x_1+x_2+\dots+x_n=2s+1\}, \\ E(n,2s+1,s)=\{\{x,y\}:(x,y)=s\}, \end{align*} where $(x,y)$ stands for the inner product. We study the random graph ${\mathcal G}(G(n,2s+1,s),p)$ each of whose edges is taken from the set $E(n,2s+1,s)$ with probability $p$ independently of the other edges. We prove a new bound for the chromatic number of such a graph.
Keywords: Hadwiger–Nelson problem, distance graph, random subgraph, chromatic number, Turán number.
@article{MZM_2015_97_3_a2,
     author = {A. S. Gusev},
     title = {New {Upper} {Bound} for the {Chromatic} {Number\\} of {a~Random} {Subgraph} of {a~Distance} {Graph}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {342--349},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a2/}
}
TY  - JOUR
AU  - A. S. Gusev
TI  - New Upper Bound for the Chromatic Number\\ of a~Random Subgraph of a~Distance Graph
JO  - Matematičeskie zametki
PY  - 2015
SP  - 342
EP  - 349
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a2/
LA  - ru
ID  - MZM_2015_97_3_a2
ER  - 
%0 Journal Article
%A A. S. Gusev
%T New Upper Bound for the Chromatic Number\\ of a~Random Subgraph of a~Distance Graph
%J Matematičeskie zametki
%D 2015
%P 342-349
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a2/
%G ru
%F MZM_2015_97_3_a2
A. S. Gusev. New Upper Bound for the Chromatic Number\\ of a~Random Subgraph of a~Distance Graph. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 342-349. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a2/