On the Number of Components of Fixed Size in a Random $A$-Mapping
Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 462-470

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak S_n$ be the semigroup of mappings of a set of $n$ elements into itself, let $A$ be a fixed subset of the set of natural numbers $\mathbb N$, and let $V_n(A)$ be the set of mappings from $\mathfrak S_n$ for which the sizes of the contours belong to the set $A$. Mappings from $V_n(A)$ are usually called $A$-mappings. Consider a random mapping $\sigma_n$ uniformly distributed on $V_n(A)$. It is assumed that the set $A$ possesses asymptotic density $\varrho$, including the case $\varrho=0$. Let $\xi_{in}$ be the number of connected components of a random mapping $\sigma_n$ of size $i\in\mathbb N$. For a fixed integer $b\in\mathbb N$, as $n\to\infty$, the asymptotic behavior of the joint distribution of random variables $\xi_{1n},\xi_{2n},\dots,\xi_{bn}$ is studied. It is shown that this distribution weakly converges to the joint distribution of independent Poisson random variables $\eta_1,\eta_2,\dots,\eta_b$ with some parameters $\lambda_i=\mathsf E\eta_{i}$, $i\in\mathbb N$.
Keywords: random $A$-mapping, asymptotic behavior of the joint distribution of random variables, regularly/slowly varying function in the sense of Karamata, Stirling's formula.
Mots-clés : Poisson random variable
@article{MZM_2015_97_3_a13,
     author = {A. L. Yakymiv},
     title = {On the {Number} of {Components} of {Fixed} {Size} in a {Random} $A${-Mapping}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {462--470},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a13/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - On the Number of Components of Fixed Size in a Random $A$-Mapping
JO  - Matematičeskie zametki
PY  - 2015
SP  - 462
EP  - 470
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a13/
LA  - ru
ID  - MZM_2015_97_3_a13
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T On the Number of Components of Fixed Size in a Random $A$-Mapping
%J Matematičeskie zametki
%D 2015
%P 462-470
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a13/
%G ru
%F MZM_2015_97_3_a13
A. L. Yakymiv. On the Number of Components of Fixed Size in a Random $A$-Mapping. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 462-470. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a13/