On Removable Singularities of Maps with Growth Bounded by a Function
Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 448-461
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper studies questions related to the local behavior of almost everywhere differentiable maps with the $N$, $N^{-1}$, $ACP$, and $ACP^{-1}$ properties whose quasiconformality characteristic satisfies certain growth conditions. It is shown that, if a map of this type grows in a neighborhood of an isolated boundary point no faster than a function of the radius of a ball, then this point is either a removable singular point or a pole of this map.
Keywords:
removable singularity, essential singularity, function of bounded growth, Luzin's properties $N$ and $N^{-1}$, class $ACP$, class $ACP^{-1}$.
Mots-clés : pole
Mots-clés : pole
@article{MZM_2015_97_3_a12,
author = {E. A. Sevost'yanov},
title = {On {Removable} {Singularities} of {Maps} with {Growth} {Bounded} by a {Function}},
journal = {Matemati\v{c}eskie zametki},
pages = {448--461},
publisher = {mathdoc},
volume = {97},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a12/}
}
E. A. Sevost'yanov. On Removable Singularities of Maps with Growth Bounded by a Function. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 448-461. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a12/