On Removable Singularities of Maps with Growth Bounded by a Function
Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 448-461.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies questions related to the local behavior of almost everywhere differentiable maps with the $N$, $N^{-1}$, $ACP$, and $ACP^{-1}$ properties whose quasiconformality characteristic satisfies certain growth conditions. It is shown that, if a map of this type grows in a neighborhood of an isolated boundary point no faster than a function of the radius of a ball, then this point is either a removable singular point or a pole of this map.
Keywords: removable singularity, essential singularity, function of bounded growth, Luzin's properties $N$ and $N^{-1}$, class $ACP$, class $ACP^{-1}$.
Mots-clés : pole
@article{MZM_2015_97_3_a12,
     author = {E. A. Sevost'yanov},
     title = {On {Removable} {Singularities} of {Maps} with {Growth} {Bounded} by a {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {448--461},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a12/}
}
TY  - JOUR
AU  - E. A. Sevost'yanov
TI  - On Removable Singularities of Maps with Growth Bounded by a Function
JO  - Matematičeskie zametki
PY  - 2015
SP  - 448
EP  - 461
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a12/
LA  - ru
ID  - MZM_2015_97_3_a12
ER  - 
%0 Journal Article
%A E. A. Sevost'yanov
%T On Removable Singularities of Maps with Growth Bounded by a Function
%J Matematičeskie zametki
%D 2015
%P 448-461
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a12/
%G ru
%F MZM_2015_97_3_a12
E. A. Sevost'yanov. On Removable Singularities of Maps with Growth Bounded by a Function. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 448-461. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a12/

[1] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR | Zbl

[2] E. A. Sevostyanov, “K teorii ustraneniya osobennostei otobrazhenii s neogranichennoi kharakteristikoi kvazikonformnosti”, Izv. RAN. Ser. matem., 74:1 (2010), 159–174 | DOI | MR | Zbl

[3] E. A. Sevostyanov, “O lokalnom povedenii otobrazhenii s neogranichennoi kharakteristikoi kvazikonformnosti”, Sib. matem. zhurn., 53:3 (2012), 648–662 | MR | Zbl

[4] A. A. Ignatev, V. I. Ryazanov, “K teorii granichnogo povedeniya prostranstvennykh otobrazhenii”, Ukr. matem. vestnik, 3:2 (2006), 199–211 | MR | Zbl

[5] J. Väisälä, Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl

[6] J. Väisälä, “Modulus and capacity inequalities for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 1972, 1–14 | MR | Zbl

[7] S. Rickman, Quasiregular mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993 | MR | Zbl

[8] E. A. Sevostyanov, “Ob odnom modulnom neravenstve dlya otobrazhenii s konechnym iskazheniem dliny”, Ukr. matem. zhurn., 61:5 (2009), 680–688 | MR | Zbl

[9] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in Modern Mapping Theory, Springer Monogr. Math., Springer, New York, 2009 | MR | Zbl

[10] E. A. Sevostyanov, “O normalnosti semeistv prostranstvennykh otobrazhenii s vetvleniem”, Ukr. matem. zhurn., 60:10 (2008), 1389–1400 | MR | Zbl

[11] V. I. Ryazanov, E. A. Sevostyanov, “Ravnostepennaya nepreryvnost kvazikonformnykh v srednem otobrazhenii”, Sib. matem. zhurn., 52:3 (2011), 665–679 | MR | Zbl

[12] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, “Mappings with finite length distortion”, J. Anal. Math., 93:1 (2004), 215–236 | DOI | MR | Zbl

[13] T. Iwaniec, G. Martin, Geometrical Function Theory and Non-Linear Analysis, Oxford Math. Monogr., Clarendon Press, Oxford, 2001 | MR

[14] C. J. Bishop, V. Ya. Gutlyanskii, O. Martio, M. Vuorinen, “On conformal dilatation in space”, Int. J. Math. Math. Sci., 22 (2003), 1397–1420 | DOI | MR | Zbl

[15] V. Gutlyanskii, V. Ryazanov, U. Srebro, E. Yakubov, The Beltrami Equation: A Geometric Approach, Dev. Math., 26, Springer, New York, 2012 | MR | Zbl

[16] V. M. Miklyukov, “Otnositelnoe rasstoyanie M. A. Lavrenteva i prostye kontsy na neparametricheskikh poverkhnostyakh”, Ukr. matem. vestnik, 1:3 (2004), 349–372 | MR | Zbl

[17] A. Ukhlov, S. K. Vodop'yanov, “Mappings with bounded $(P,Q)$-distortion on Carnot groups”, Bull. Sci. Mat., 134:6 (2010), 605–634 | DOI | Zbl

[18] E. A. Sevostyanov, “Obobschenie odnoi lemmy E. A. Poletskogo na klassy prostranstvennykh otobrazhenii”, Ukr. matem. zhurn., 61:7 (2009), 969–975 | MR | Zbl