On Removable Singularities of Maps with Growth Bounded by a Function
Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 448-461

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies questions related to the local behavior of almost everywhere differentiable maps with the $N$, $N^{-1}$, $ACP$, and $ACP^{-1}$ properties whose quasiconformality characteristic satisfies certain growth conditions. It is shown that, if a map of this type grows in a neighborhood of an isolated boundary point no faster than a function of the radius of a ball, then this point is either a removable singular point or a pole of this map.
Keywords: removable singularity, essential singularity, function of bounded growth, Luzin's properties $N$ and $N^{-1}$, class $ACP$, class $ACP^{-1}$.
Mots-clés : pole
@article{MZM_2015_97_3_a12,
     author = {E. A. Sevost'yanov},
     title = {On {Removable} {Singularities} of {Maps} with {Growth} {Bounded} by a {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {448--461},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a12/}
}
TY  - JOUR
AU  - E. A. Sevost'yanov
TI  - On Removable Singularities of Maps with Growth Bounded by a Function
JO  - Matematičeskie zametki
PY  - 2015
SP  - 448
EP  - 461
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a12/
LA  - ru
ID  - MZM_2015_97_3_a12
ER  - 
%0 Journal Article
%A E. A. Sevost'yanov
%T On Removable Singularities of Maps with Growth Bounded by a Function
%J Matematičeskie zametki
%D 2015
%P 448-461
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a12/
%G ru
%F MZM_2015_97_3_a12
E. A. Sevost'yanov. On Removable Singularities of Maps with Growth Bounded by a Function. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 448-461. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a12/