On the Method of Two-Sided Continuation of Solutions of the Integral Convolution Equation on a Finite Interval
Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 323-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the development of the method of two-sided continuation of the solution of the integral convolution equation $$ S(x)=g(x)+\int _{0}^{r} K(x-t)S(t)\,dt,\qquad 0,\quad r \infty, $$ with an even kernel function $K\in L_{1} (-r,r)$. Two continuations of the solution $S$ are considered: to $(-\infty, 0]$ and to $[r,\infty)$. A Wiener–Hopf-type factorization is used. Under invertibility conditions for some operators, the problem can be reduced to two equations with sum kernels: $$ H^{\pm } (x)=q_{0}^{\pm } (x) \mp \int _{0}^{\infty } U(x+t+r)H^{\pm } (t)\,dt,\qquad x>0,\quad U\in L^{+} . $$ Applied aspects of the realization of the method are discussed.
Keywords: integral convolution equation, two-sided continuation of a solution, kernel function, Wiener–Hopf-type factorization, Baxter–Hirschman method.
@article{MZM_2015_97_3_a0,
     author = {A. G. Barseghyan},
     title = {On the {Method} of {Two-Sided} {Continuation} of {Solutions} of the {Integral} {Convolution} {Equation} on a {Finite} {Interval}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--335},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a0/}
}
TY  - JOUR
AU  - A. G. Barseghyan
TI  - On the Method of Two-Sided Continuation of Solutions of the Integral Convolution Equation on a Finite Interval
JO  - Matematičeskie zametki
PY  - 2015
SP  - 323
EP  - 335
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a0/
LA  - ru
ID  - MZM_2015_97_3_a0
ER  - 
%0 Journal Article
%A A. G. Barseghyan
%T On the Method of Two-Sided Continuation of Solutions of the Integral Convolution Equation on a Finite Interval
%J Matematičeskie zametki
%D 2015
%P 323-335
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a0/
%G ru
%F MZM_2015_97_3_a0
A. G. Barseghyan. On the Method of Two-Sided Continuation of Solutions of the Integral Convolution Equation on a Finite Interval. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 323-335. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a0/

[1] I. Ts. Gokhberg, I. A. Feldman, Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR | Zbl

[2] G. Baxter, I. I. Hirschman, Jr., “An explicit inversion formula for finite-section Wiener–Hopf operators”, Bull. Amer. Math. Soc., 70:6 (1964), 820–823 | DOI | MR | Zbl

[3] L. A. Sakhnovich, “Uravneniya s raznostnym yadrom na konechnom otrezke”, UMN, 35:4 (1980), 69–129 | MR | Zbl

[4] F. D. Gakhov, Yu. I. Cherskii, Uravneniya tipa svertki, Nauka, M., 1978 | MR | Zbl

[5] I. Feldman, I. Gohberg, N. Krupnik, “Convolution equations on finite intervals and factorization of matrix functions”, Integral Equations Oper. Theory, 36:2 (2000), 201–211 | DOI | MR | Zbl

[6] V. Yu. Novokshenov, “Uravneniya v svertkakh na konechnom otrezke i faktorizatsiya ellipticheskikh matrits”, Matem. zametki, 27:6 (1980), 935–946 | MR | Zbl

[7] V. V. Sobolev, Perenos luchistoi energii v atmosferakh zvezd i planet, GITTL, M., 1956 | Zbl

[8] K. Cherchinyani, Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | MR

[9] L. G. Arabadzhyan, N. B. Engibaryan, “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhn. Ser. Mat. anal., 22, VINITI, M., 1984, 175–244 | MR | Zbl

[10] J. Casti, R. Kalaba, Imbedding Methods in Applied Mathematics, Appl. Math. Comp., 2, Addison-Wesley Publ., Reading, MA, 1973 | MR | Zbl

[11] N. B. Engibaryan, M. A. Mnatsakanyan, “Ob odnom integralnom uravnenii s raznostnym yadrom”, Matem. zametki, 19:6 (1976), 927–932 | MR | Zbl

[12] M. P. Ganin, “Ob integralnom uravnenii Fredgolma s yadrom, zavisyaschim ot raznosti argumentov”, Izv. vuzov. Matem., 1963, no. 2, 31–43 | MR | Zbl

[13] N. B. Engibaryan, A. G. Barsegyan, “Perenos izlucheniya v ploskom sloe konechnoi tolschiny, Metod dvustoronnego prodolzheniya”, Astrofizika, 55:4 (2012), 627–639

[14] A. G. Barsegyan, “Integralnoe uravnenie s summarno-raznostnym yadrom na konechnom promezhutke”, Izv. NAN RA. Matem., 40:3 (2005), 24–34 | MR

[15] N. B. Engibaryan, A. G. Barsegyan, “Sluchainye bluzhdaniya i smesi gamma-raspredelenii”, TVP, 55:3 (2010), 571–577 | DOI | MR