On the Method of Two-Sided Continuation of Solutions of the Integral Convolution Equation on a Finite Interval
Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 323-335

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the development of the method of two-sided continuation of the solution of the integral convolution equation $$ S(x)=g(x)+\int _{0}^{r} K(x-t)S(t)\,dt,\qquad 0,\quad r \infty, $$ with an even kernel function $K\in L_{1} (-r,r)$. Two continuations of the solution $S$ are considered: to $(-\infty, 0]$ and to $[r,\infty)$. A Wiener–Hopf-type factorization is used. Under invertibility conditions for some operators, the problem can be reduced to two equations with sum kernels: $$ H^{\pm } (x)=q_{0}^{\pm } (x) \mp \int _{0}^{\infty } U(x+t+r)H^{\pm } (t)\,dt,\qquad x>0,\quad U\in L^{+} . $$ Applied aspects of the realization of the method are discussed.
Keywords: integral convolution equation, two-sided continuation of a solution, kernel function, Wiener–Hopf-type factorization, Baxter–Hirschman method.
@article{MZM_2015_97_3_a0,
     author = {A. G. Barseghyan},
     title = {On the {Method} of {Two-Sided} {Continuation} of {Solutions} of the {Integral} {Convolution} {Equation} on a {Finite} {Interval}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--335},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a0/}
}
TY  - JOUR
AU  - A. G. Barseghyan
TI  - On the Method of Two-Sided Continuation of Solutions of the Integral Convolution Equation on a Finite Interval
JO  - Matematičeskie zametki
PY  - 2015
SP  - 323
EP  - 335
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a0/
LA  - ru
ID  - MZM_2015_97_3_a0
ER  - 
%0 Journal Article
%A A. G. Barseghyan
%T On the Method of Two-Sided Continuation of Solutions of the Integral Convolution Equation on a Finite Interval
%J Matematičeskie zametki
%D 2015
%P 323-335
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a0/
%G ru
%F MZM_2015_97_3_a0
A. G. Barseghyan. On the Method of Two-Sided Continuation of Solutions of the Integral Convolution Equation on a Finite Interval. Matematičeskie zametki, Tome 97 (2015) no. 3, pp. 323-335. http://geodesic.mathdoc.fr/item/MZM_2015_97_3_a0/