The Dirichlet Problem for Higher-Order Partial Differential Equations
Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 262-276

Voir la notice de l'article provenant de la source Math-Net.Ru

For higher-order partial differential equations in two or three variables, the Dirichlet problem in rectangular domains is studied. Small denominators hampering the convergence of series appear in the process of constructing the solution of the problem by the spectral decomposition method. A uniqueness criterion for the solution is established. In the two-dimensional case, estimates justifying the existence of a solution of the Dirichlet problem are obtained. In the three-dimensional case where the domain is a cube, it is shown that the uniqueness of the solution of the Dirichlet problem is equivalent to the great Fermat problem.
Keywords: higher-order partial differential equation, Dirichlet problem, spectral decomposition method, Fourier series, Fermat problem.
@article{MZM_2015_97_2_a8,
     author = {K. B. Sabitov},
     title = {The {Dirichlet} {Problem} for {Higher-Order} {Partial} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {262--276},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a8/}
}
TY  - JOUR
AU  - K. B. Sabitov
TI  - The Dirichlet Problem for Higher-Order Partial Differential Equations
JO  - Matematičeskie zametki
PY  - 2015
SP  - 262
EP  - 276
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a8/
LA  - ru
ID  - MZM_2015_97_2_a8
ER  - 
%0 Journal Article
%A K. B. Sabitov
%T The Dirichlet Problem for Higher-Order Partial Differential Equations
%J Matematičeskie zametki
%D 2015
%P 262-276
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a8/
%G ru
%F MZM_2015_97_2_a8
K. B. Sabitov. The Dirichlet Problem for Higher-Order Partial Differential Equations. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 262-276. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a8/