The Dirichlet Problem for Higher-Order Partial Differential Equations
Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 262-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

For higher-order partial differential equations in two or three variables, the Dirichlet problem in rectangular domains is studied. Small denominators hampering the convergence of series appear in the process of constructing the solution of the problem by the spectral decomposition method. A uniqueness criterion for the solution is established. In the two-dimensional case, estimates justifying the existence of a solution of the Dirichlet problem are obtained. In the three-dimensional case where the domain is a cube, it is shown that the uniqueness of the solution of the Dirichlet problem is equivalent to the great Fermat problem.
Keywords: higher-order partial differential equation, Dirichlet problem, spectral decomposition method, Fourier series, Fermat problem.
@article{MZM_2015_97_2_a8,
     author = {K. B. Sabitov},
     title = {The {Dirichlet} {Problem} for {Higher-Order} {Partial} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {262--276},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a8/}
}
TY  - JOUR
AU  - K. B. Sabitov
TI  - The Dirichlet Problem for Higher-Order Partial Differential Equations
JO  - Matematičeskie zametki
PY  - 2015
SP  - 262
EP  - 276
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a8/
LA  - ru
ID  - MZM_2015_97_2_a8
ER  - 
%0 Journal Article
%A K. B. Sabitov
%T The Dirichlet Problem for Higher-Order Partial Differential Equations
%J Matematičeskie zametki
%D 2015
%P 262-276
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a8/
%G ru
%F MZM_2015_97_2_a8
K. B. Sabitov. The Dirichlet Problem for Higher-Order Partial Differential Equations. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 262-276. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a8/

[1] J. Hadamard, “On some topics connected with linear partial differential equations”, Proc. Benares Math. Soc., 3 (1921), 39–48 | Zbl

[2] A. Huber, “Die erste Randwertaufgabe für geschlossene Bereiche bei der Gleichung $\frac{\partial^2z}{\partial x\partial y}=f(x,y)$”, Monatsh. Math. Phys., 39 (1932), 79–100 | DOI | MR | Zbl

[3] P. Mangeron, “Sopra un problem al contorno per un'equazione differeziale alle derivate parziali di quarto ordino con le caratteristiche realidoppie”, Rend. Accad. Sci. Fis. Mat. (4), Napoli, 2 (1932), 29–40 | Zbl

[4] P. G. Bourgin, R. Duffin, “The Dirichlet problem for the vibrating string equation”, Bull. Amer. Math. Soc., 45:12 (1939), 851–858 | DOI | MR | Zbl

[5] F. John, “Diriclet problem for a hyperbolic equation”, Amer. J. Math., 63:1 (1941), 141–154 | DOI | MR | Zbl

[6] S. L. Sobolev, “Primer korrektnoi zadachi dlya uravneniya kolebaniya struny s dannymi na vsei granitse”, Dokl. AN SSSR, 109 (1956), 707–709 | MR | Zbl

[7] R. A. Aleksandryan, “O zadache Dirikhle dlya uravneniya struny i o polnote odnoi sistemy funktsii v kruge”, Dokl. AN SSSR, 73 (1950), 869–872 | MR | Zbl

[8] N. N. Vakhaniya, “Ob odnoi kraevoi zadache s dannymi na vsei granitse dlya giperbolicheskoi sistemy, ekvivalentnoi uravneniyu kolebaniya struny”, Dokl. AN SSSR, 116 (1957), 906–909 | MR | Zbl

[9] Yu. M. Berezanskii, “O zadache Dirikhle dlya uravneniya kolebaniya struny”, Ukr. matem. zhurn., 12:4 (1960), 363–372 | MR

[10] P. P. Mosolov, “O zadache Dirikhle dlya uravnenii v chastnykh proizvodnykh”, Izv. vuzov. Matem., 1960, no. 3, 213–218 | MR | Zbl

[11] V. I. Arnold, “Malye znamenateli. I. Ob otobrazheniyakh okruzhnosti na sebya”, Izv. AN SSSR. Ser. matem., 25:1 (1961), 21–86 | MR | Zbl

[12] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR | Zbl

[13] K. B. Sabitov, “O zadache Dirikhle dlya uravneniya struny”, Tr. Sterlitamakskogo filiala AN Resp. Bashkortostan. Ser. Fiz.-matem. i tekhn. nauki", 3, Gilem, Ufa, 2006, 169–176

[14] V. A. Ilin, “Edinstvennost i prinadlezhnost $W^1_2$ klassicheskogo resheniya smeshannoi zadachi dlya samosopryazhennogo giperbolicheskogo uravneniya”, Matem. zametki, 17:1 (1975), 91–101 | MR | Zbl

[15] A. Ya. Khinchin, Tsepnye drobi, Nauka, M., 1978 | MR

[16] A. A. Bukhshtab, Teoriya chisel, Prosveschenie, M., 1966 | MR | Zbl

[17] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR | Zbl

[18] R. Denchev, “O zadache Dirikhle dlya volnovogo uravneniya”, Dokl. AN SSSR, 127:3 (1959), 501–504 | MR | Zbl

[19] K. B. Sabitov, “Malye znamenateli i zadacha Dirikhle dlya uravnenii v chastnykh proizvodnykh”, Materialy mezhdunarodnoi konferentsii “Metricheskaya geometriya poverkhnostei i mnogogrannikov”, posvyaschennoi 100-letiyu so dnya rozhdeniya N. V. Efimova, M., 2010, 93–94

[20] K. B. Sabitov, “Zadacha Dirikhle dlya dvumernykh uravnenii v chastnykh proizvodnykh”, Materialy mezhdunarodnogo Rossiisko-Bolgarskogo simpoziuma “Uravneniya smeshannogo tipa i rodstvennye problemy analiza i informatiki”, Nalchik, 2010, 212–214

[21] K. B. Sabitov, “Malye znamenateli v zadachakh Dirikhle dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Materialy mezhdunarodnoi konferentsii “Kompleksnyi analiz i ego prilozheniya v differentsialnykh uravneniyakh i teorii chisel”, Belgorod, 2011, 107–108