Family of Equal-Sized $n$-Dimensional Polyhedra Satisfying Cavalieri's Principle
Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 231-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the equality of the $(n-1)$-dimensional volumes of the cross-sections by parallel hyperplanes of a large family of $n$-dimensional convex polyhedra with nonnegative integer coordinates of their vertices, including the unit cube and the rectangular simplex with “legs” of lengths $1,2,\dots,n$. The cross-sections are perpendicular to the main diagonal of the cube. The first proof is carried out by a gradual reconstruction of the polyhedra, while the second one employs a direct calculation of the volumes by representing the polyhedra as the algebraic sum of convex cones.
Keywords: $n$-dimensional polyhedron, Cavalieri's principle, abelian group, pyramid, cone, cube.
Mots-clés : multiset
@article{MZM_2015_97_2_a5,
     author = {F. M. Malyshev},
     title = {Family of {Equal-Sized} $n${-Dimensional} {Polyhedra} {Satisfying} {Cavalieri's} {Principle}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {231--248},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a5/}
}
TY  - JOUR
AU  - F. M. Malyshev
TI  - Family of Equal-Sized $n$-Dimensional Polyhedra Satisfying Cavalieri's Principle
JO  - Matematičeskie zametki
PY  - 2015
SP  - 231
EP  - 248
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a5/
LA  - ru
ID  - MZM_2015_97_2_a5
ER  - 
%0 Journal Article
%A F. M. Malyshev
%T Family of Equal-Sized $n$-Dimensional Polyhedra Satisfying Cavalieri's Principle
%J Matematičeskie zametki
%D 2015
%P 231-248
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a5/
%G ru
%F MZM_2015_97_2_a5
F. M. Malyshev. Family of Equal-Sized $n$-Dimensional Polyhedra Satisfying Cavalieri's Principle. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 231-248. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a5/

[1] A. M. Zubkov, “Veroyatnostnoe dokazatelstvo odnoi geometricheskoi teoremy”, Matem. zametki, 26:6 (1979), 957–959 | MR | Zbl

[2] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR | Zbl

[3] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984 | MR | Zbl

[4] A. M. Ostrowski, “Two explicit formulae for the distribution function of the sum of $n$ uniformly distributed independent variables”, Arch. Math., 3:6 (1952), 451–459 | DOI | MR | Zbl

[5] K. Ball, “Cube slicing in $\mathbb{R}^n$”, Proc. Amer. Math. Soc., 97:3 (1986), 465–473 | MR | Zbl

[6] R. Frank, H. Riede, “Hyperplane sections of the $n$-dimensional cube”, Amer. Math. Monthly, 119:10 (2012), 868–872 | MR | Zbl

[7] Matematicheskaya entsiklopediya, T. 2, Sovetskaya entsiklopediya, M., 1979

[8] M. M. Postnikov, Lektsii po geometrii. Semestr I. Analiticheskaya geometriya, Nauka, M., 1979 | MR

[9] F. Kartesi, Vvedenie v konechnye geometrii, Nauka, M., 1980 | MR

[10] Dzh. Kh. Meison, “Izuchenie matroidov kak geometricheskikh konfiguratsii”, Problemy kombinatornogo analiza, Novoe v zarubezhnoi nauke, 19, Mir, M., 1980, 7–50 | MR

[11] F. M. Malyshev, “Simpletsialnye sistemy lineinykh uravnenii”, Algebra, Izd-vo Mosk. un-ta, M., 1980, 53–56 | Zbl

[12] O. Veblen, “Differential invariants and geometry”, Atti del Congresso Internationale dei Matematici, Vol. 1, Bologna, 1928, 181–189

[13] J.-L. Marichal, M. J. Mossinghoff, “Slices, slabs, and sections of the unit hypercube”, Online J. Anal. Comb., 3 (2008), Art. 1 | MR | Zbl