An Analog of Wiener's Theorem for Infinite-Dimensional Banach Spaces
Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 191-202

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study various generalizations of the classical Wiener algebra on a Banach space and prove analogs of Wiener's theorem on the invertibility of elements of such algebras.
Keywords: Wiener algebra, Banach space, Wiener's theorem, Fourier series, maximal ideal, Banach algebra
Mots-clés : convolution algebra, Aron–Berner extension.
@article{MZM_2015_97_2_a2,
     author = {A. V. Zagorodnjuk and M. A. Mitrofanov},
     title = {An {Analog} of {Wiener's} {Theorem} for {Infinite-Dimensional} {Banach} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {191--202},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a2/}
}
TY  - JOUR
AU  - A. V. Zagorodnjuk
AU  - M. A. Mitrofanov
TI  - An Analog of Wiener's Theorem for Infinite-Dimensional Banach Spaces
JO  - Matematičeskie zametki
PY  - 2015
SP  - 191
EP  - 202
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a2/
LA  - ru
ID  - MZM_2015_97_2_a2
ER  - 
%0 Journal Article
%A A. V. Zagorodnjuk
%A M. A. Mitrofanov
%T An Analog of Wiener's Theorem for Infinite-Dimensional Banach Spaces
%J Matematičeskie zametki
%D 2015
%P 191-202
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a2/
%G ru
%F MZM_2015_97_2_a2
A. V. Zagorodnjuk; M. A. Mitrofanov. An Analog of Wiener's Theorem for Infinite-Dimensional Banach Spaces. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 191-202. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a2/