Asymptotics of the Spectrum of a Differential Operator with the Weight Generated by the Minkowski Function
Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 302-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the asymptotics of the spectrum of the boundary-value problem $$ -y''-\lambda\rho y=0, \qquad y(0)=y(1)=0, $$ where $\rho$ is the generalized derivative of the Minkowski function, i.e., $\rho=?'(x)$ (here $?(x)$ is the “question-mark function” first defined by Minkowski, who introduced this notation). For the eigenvalues of the problem, asymptotic two-sided estimates of power type are obtained. The order of the power is determined by the Hausdorff dimension of the support of the Minkowski measure $d?$.
Keywords: spectrum of a differential operator, Minkowski function, boundary-value problem, Minkowski measure.
Mots-clés : Hausdorff dimension
@article{MZM_2015_97_2_a12,
     author = {I. A. Sheipak},
     title = {Asymptotics of the {Spectrum} of a {Differential} {Operator} with the {Weight} {Generated} by the {Minkowski} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {302--308},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a12/}
}
TY  - JOUR
AU  - I. A. Sheipak
TI  - Asymptotics of the Spectrum of a Differential Operator with the Weight Generated by the Minkowski Function
JO  - Matematičeskie zametki
PY  - 2015
SP  - 302
EP  - 308
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a12/
LA  - ru
ID  - MZM_2015_97_2_a12
ER  - 
%0 Journal Article
%A I. A. Sheipak
%T Asymptotics of the Spectrum of a Differential Operator with the Weight Generated by the Minkowski Function
%J Matematičeskie zametki
%D 2015
%P 302-308
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a12/
%G ru
%F MZM_2015_97_2_a12
I. A. Sheipak. Asymptotics of the Spectrum of a Differential Operator with the Weight Generated by the Minkowski Function. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 302-308. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a12/

[1] I. S. Kats, M. G. Krein, “O spektralnykh funktsiyakh struny”: F. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968, 648–733 | MR | Zbl

[2] T. Uno, I. Hong, “Some consideration of asymptotic distribution of eigenvalues for the equation $d^2u/dx^2+\lambda\rho(x)u=0$”, Japan. J. Math., 29 (1959), 152–164 | MR | Zbl

[3] M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl

[4] A. A. Vladimirov, I. A. Sheipak, “Samopodobnye funktsii v prostranstve $L_2[0,1]$ i zadacha Shturma–Liuvillya s singulyarnym indefinitnym vesom”, Matem. sb., 197:11 (2006), 13–30 | DOI | MR | Zbl

[5] A. A. Vladimirov, I. A. Sheipak, “Indefinitnaya zadacha Shturma–Liuvillya dlya nekotorykh klassov samopodobnykh singulyarnykh vesov”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Sbornik statei, Tr. MIAN, 255, Nauka, M., 2006, 88–98 | MR

[6] A. A. Vladimirov, I. A. Sheipak, “Asimptotika sobstvennykh znachenii zadachi Shturma–Liuvillya s diskretnym samopodobnym vesom”, Matem. zametki, 88:5 (2010), 662–672 | DOI | MR | Zbl

[7] H. Minkowski, “Zur Geometrie der Zahlen”, Verhandlungen des III Internationalen Mathematiker-Kongresses in Heidelberg, Berlin, 1904, 104–173

[8] A. Denjoy, “Sur une fonction réelle de Minkowski”, J. Math. Pures Appl., 17 (1938), 105–151 | Zbl

[9] R. Salem, “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439 | DOI | MR | Zbl

[10] J. R. Kinney, “Note on a singular function of Minkowski”, Proc. Amer. Math. Soc., 11:5 (1960), 788–794 | DOI | MR | Zbl

[11] R. F. Tichy, J. Uitz, “An Extension of Minkowski's Singular Function”, Appl. Math. Lett., 8:5 (1995), 39–46 | DOI | MR | Zbl

[12] R. M. Conley, A Survey of the Minkowski $?(x)$ Function, Thesis Master of Science in Mathematics, Morgantown, WV, 2003

[13] H. Triebel, Fractals and Spectra. Related to Fourier Analysis and Function Spaces, Monogr. Math., 91, Birkhäuser Verlag, Basel, 1997 | MR | Zbl

[14] A. A. Vladimirov, I. A. Sheipak, “O zadache Neimana dlya uravneniya Shturma–Liuvillya s samopodobnym vesom kantorovskogo tipa”, Funkts. analiz i ego pril., 47:4 (2013), 18–29 | DOI | MR