Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_2_a12, author = {I. A. Sheipak}, title = {Asymptotics of the {Spectrum} of a {Differential} {Operator} with the {Weight} {Generated} by the {Minkowski} {Function}}, journal = {Matemati\v{c}eskie zametki}, pages = {302--308}, publisher = {mathdoc}, volume = {97}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a12/} }
TY - JOUR AU - I. A. Sheipak TI - Asymptotics of the Spectrum of a Differential Operator with the Weight Generated by the Minkowski Function JO - Matematičeskie zametki PY - 2015 SP - 302 EP - 308 VL - 97 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a12/ LA - ru ID - MZM_2015_97_2_a12 ER -
I. A. Sheipak. Asymptotics of the Spectrum of a Differential Operator with the Weight Generated by the Minkowski Function. Matematičeskie zametki, Tome 97 (2015) no. 2, pp. 302-308. http://geodesic.mathdoc.fr/item/MZM_2015_97_2_a12/
[1] I. S. Kats, M. G. Krein, “O spektralnykh funktsiyakh struny”: F. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968, 648–733 | MR | Zbl
[2] T. Uno, I. Hong, “Some consideration of asymptotic distribution of eigenvalues for the equation $d^2u/dx^2+\lambda\rho(x)u=0$”, Japan. J. Math., 29 (1959), 152–164 | MR | Zbl
[3] M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl
[4] A. A. Vladimirov, I. A. Sheipak, “Samopodobnye funktsii v prostranstve $L_2[0,1]$ i zadacha Shturma–Liuvillya s singulyarnym indefinitnym vesom”, Matem. sb., 197:11 (2006), 13–30 | DOI | MR | Zbl
[5] A. A. Vladimirov, I. A. Sheipak, “Indefinitnaya zadacha Shturma–Liuvillya dlya nekotorykh klassov samopodobnykh singulyarnykh vesov”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Sbornik statei, Tr. MIAN, 255, Nauka, M., 2006, 88–98 | MR
[6] A. A. Vladimirov, I. A. Sheipak, “Asimptotika sobstvennykh znachenii zadachi Shturma–Liuvillya s diskretnym samopodobnym vesom”, Matem. zametki, 88:5 (2010), 662–672 | DOI | MR | Zbl
[7] H. Minkowski, “Zur Geometrie der Zahlen”, Verhandlungen des III Internationalen Mathematiker-Kongresses in Heidelberg, Berlin, 1904, 104–173
[8] A. Denjoy, “Sur une fonction réelle de Minkowski”, J. Math. Pures Appl., 17 (1938), 105–151 | Zbl
[9] R. Salem, “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439 | DOI | MR | Zbl
[10] J. R. Kinney, “Note on a singular function of Minkowski”, Proc. Amer. Math. Soc., 11:5 (1960), 788–794 | DOI | MR | Zbl
[11] R. F. Tichy, J. Uitz, “An Extension of Minkowski's Singular Function”, Appl. Math. Lett., 8:5 (1995), 39–46 | DOI | MR | Zbl
[12] R. M. Conley, A Survey of the Minkowski $?(x)$ Function, Thesis Master of Science in Mathematics, Morgantown, WV, 2003
[13] H. Triebel, Fractals and Spectra. Related to Fourier Analysis and Function Spaces, Monogr. Math., 91, Birkhäuser Verlag, Basel, 1997 | MR | Zbl
[14] A. A. Vladimirov, I. A. Sheipak, “O zadache Neimana dlya uravneniya Shturma–Liuvillya s samopodobnym vesom kantorovskogo tipa”, Funkts. analiz i ego pril., 47:4 (2013), 18–29 | DOI | MR