Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_1_a5, author = {Zenghui Gao}, title = {$n${-Copure} {Projective} {Modules}}, journal = {Matemati\v{c}eskie zametki}, pages = {58--66}, publisher = {mathdoc}, volume = {97}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a5/} }
Zenghui Gao. $n$-Copure Projective Modules. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 58-66. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a5/
[1] E. E. Enochs, O. M. G. Jenda, “Copure injective modules”, Quaestiones Math., 14:4 (1991), 401–409 | DOI | MR | Zbl
[2] E. E. Enochs, O. M. G. Jenda, “Copure injective resolutions, flat resolvents and dimensions”, Comment. Math. Univ. Carolin., 34:2 (1993), 203–211 | MR | Zbl
[3] N. Q. Ding, J. L. Chen, “On copure flat modules and flat resolvents”, Comm. Algebra, 24:3 (1996), 1071–1081 | DOI | MR | Zbl
[4] E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., 30, Walter de Gruyter, Berlin, 2000 | MR | Zbl
[5] L. X. Mao, N. Q. Ding, “Relative copure injective and copure flat modules”, J. Pure Appl. Algebra, 208:2 (2007), 635–646 | MR | Zbl
[6] R. Sazeedeh, “Strongly torsion free, copure flat and Matlis reflexive modules”, J. Pure Appl. Algebra, 192:1-3 (2004), 265–274 | MR | Zbl
[7] L. X. Mao, N. Q. Ding, “Cotorsion modules and relative pure-injectivity”, J. Aust. Math. Soc., 81:2 (2006), 225–243 | DOI | MR | Zbl
[8] J. Z. Xu, Flat Covers of Modules, Lecture Notes in Math., 1634, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl
[9] X. H. Fu, H. Y. Zhu, N. Q. Ding, “On copure projective modules and copure projective dimensions”, Comm. Algebra, 40:1 (2012), 343–359 | DOI | MR | Zbl
[10] B. H. Maddox, “Absolutely pure modules”, Proc. Amer. Math. Soc., 18 (1967), 155–158 | DOI | MR | Zbl
[11] B. Stenström, “Coherent rings and FP-injective modules”, J. London Math. Soc. (2), 2 (1970), 323–329 | DOI | MR | Zbl
[12] L. X. Mao, N. Q. Ding, “Envelopes and covers by modules of finite FP-injective and flat dimensions”, Comm. Algebra, 35:3 (2007), 833–849 | DOI | MR | Zbl
[13] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Grad. Texts in Math., 13, Springer, New York, 1992 | MR | Zbl
[14] J. J. Rotman, An Introduction to Homological Algebra, Pure Appl. Math., 85, Academic Press, New York, 1979 | MR | Zbl
[15] D. Bennis, N. Mahdou, “Strongly Gorenstein projective, injective, and flat modules”, J. Pure Appl. Algebra, 210:2 (2007), 437–445 | MR | Zbl
[16] S. Glaz, “Commutative Coherent Rings”, Lecture Notes in Math., 1371, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl
[17] N. Q. Ding, J. L. Chen, “The flat dimensions of injective modules”, Manuscripta Math., 78:2 (1993), 165–177 | DOI | MR | Zbl
[18] R. R. Colby, “Rings which have flat injective modules”, J. Algebra, 35 (1975), 239–252 | MR | Zbl
[19] S. Jain, “Flat and FP-injectivity”, Proc. Amer. Math. Soc., 41 (1973), 437–442 | DOI | MR | Zbl
[20] D. Bennis, N. Mahdou, “Global Gorenstein dimensions”, Proc. Amer. Math. Soc., 138:2 (2010), 461–465 | DOI | MR | Zbl
[21] H. Holm, “Gorenstein homological dimensions”, J. Pure Appl. Algebra, 189:1-3 (2004), 167–193 | MR | Zbl