$n$-Copure Projective Modules
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 58-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring, $n$ a fixed nonnegative integer and $\mathcal{F}_n$ the class of all left $R$-modules of flat dimension at most $n$. A left $R$-module $M$ is called $n$-copure projective if $\operatorname{Ext}_R^1(M,F)=0$ for any $F\in \mathcal{F}_n$. Some examples are given to show that $n$-copure projective modules need not be $m$-copure projective whenever $m>n$. Then we characterize the well-known QF rings and IF rings in terms of $n$-copure projective modules. Finally, we prove that a ring $R$ is relative left hereditary if and only if every submodule of a projective (or free) left $R$-module is $n$-copure projective if and only if $\operatorname{id}_R(N)\leqslant 1$ for every left $R$-module $N$ with $N\in \mathcal{F}_n$.
Keywords: $n$-copure projective module, strongly copure injective module, (relative) hereditary ring, QF ring
Mots-clés : copure flat module.
@article{MZM_2015_97_1_a5,
     author = {Zenghui Gao},
     title = {$n${-Copure} {Projective} {Modules}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {58--66},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a5/}
}
TY  - JOUR
AU  - Zenghui Gao
TI  - $n$-Copure Projective Modules
JO  - Matematičeskie zametki
PY  - 2015
SP  - 58
EP  - 66
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a5/
LA  - ru
ID  - MZM_2015_97_1_a5
ER  - 
%0 Journal Article
%A Zenghui Gao
%T $n$-Copure Projective Modules
%J Matematičeskie zametki
%D 2015
%P 58-66
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a5/
%G ru
%F MZM_2015_97_1_a5
Zenghui Gao. $n$-Copure Projective Modules. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 58-66. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a5/

[1] E. E. Enochs, O. M. G. Jenda, “Copure injective modules”, Quaestiones Math., 14:4 (1991), 401–409 | DOI | MR | Zbl

[2] E. E. Enochs, O. M. G. Jenda, “Copure injective resolutions, flat resolvents and dimensions”, Comment. Math. Univ. Carolin., 34:2 (1993), 203–211 | MR | Zbl

[3] N. Q. Ding, J. L. Chen, “On copure flat modules and flat resolvents”, Comm. Algebra, 24:3 (1996), 1071–1081 | DOI | MR | Zbl

[4] E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., 30, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[5] L. X. Mao, N. Q. Ding, “Relative copure injective and copure flat modules”, J. Pure Appl. Algebra, 208:2 (2007), 635–646 | MR | Zbl

[6] R. Sazeedeh, “Strongly torsion free, copure flat and Matlis reflexive modules”, J. Pure Appl. Algebra, 192:1-3 (2004), 265–274 | MR | Zbl

[7] L. X. Mao, N. Q. Ding, “Cotorsion modules and relative pure-injectivity”, J. Aust. Math. Soc., 81:2 (2006), 225–243 | DOI | MR | Zbl

[8] J. Z. Xu, Flat Covers of Modules, Lecture Notes in Math., 1634, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl

[9] X. H. Fu, H. Y. Zhu, N. Q. Ding, “On copure projective modules and copure projective dimensions”, Comm. Algebra, 40:1 (2012), 343–359 | DOI | MR | Zbl

[10] B. H. Maddox, “Absolutely pure modules”, Proc. Amer. Math. Soc., 18 (1967), 155–158 | DOI | MR | Zbl

[11] B. Stenström, “Coherent rings and FP-injective modules”, J. London Math. Soc. (2), 2 (1970), 323–329 | DOI | MR | Zbl

[12] L. X. Mao, N. Q. Ding, “Envelopes and covers by modules of finite FP-injective and flat dimensions”, Comm. Algebra, 35:3 (2007), 833–849 | DOI | MR | Zbl

[13] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Grad. Texts in Math., 13, Springer, New York, 1992 | MR | Zbl

[14] J. J. Rotman, An Introduction to Homological Algebra, Pure Appl. Math., 85, Academic Press, New York, 1979 | MR | Zbl

[15] D. Bennis, N. Mahdou, “Strongly Gorenstein projective, injective, and flat modules”, J. Pure Appl. Algebra, 210:2 (2007), 437–445 | MR | Zbl

[16] S. Glaz, “Commutative Coherent Rings”, Lecture Notes in Math., 1371, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl

[17] N. Q. Ding, J. L. Chen, “The flat dimensions of injective modules”, Manuscripta Math., 78:2 (1993), 165–177 | DOI | MR | Zbl

[18] R. R. Colby, “Rings which have flat injective modules”, J. Algebra, 35 (1975), 239–252 | MR | Zbl

[19] S. Jain, “Flat and FP-injectivity”, Proc. Amer. Math. Soc., 41 (1973), 437–442 | DOI | MR | Zbl

[20] D. Bennis, N. Mahdou, “Global Gorenstein dimensions”, Proc. Amer. Math. Soc., 138:2 (2010), 461–465 | DOI | MR | Zbl

[21] H. Holm, “Gorenstein homological dimensions”, J. Pure Appl. Algebra, 189:1-3 (2004), 167–193 | MR | Zbl