$n$-Copure Projective Modules
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 58-66
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a ring, $n$ a fixed nonnegative integer and $\mathcal{F}_n$ the class of all left $R$-modules of flat dimension at most $n$. A left $R$-module $M$ is called $n$-copure projective if $\operatorname{Ext}_R^1(M,F)=0$ for any $F\in \mathcal{F}_n$. Some examples are given to show that $n$-copure projective modules need not be $m$-copure projective whenever $m>n$. Then we characterize the well-known QF rings and IF rings in terms of $n$-copure projective modules. Finally, we prove that a ring $R$ is relative left hereditary if and only if every submodule of a projective (or free) left $R$-module is $n$-copure projective if and only if $\operatorname{id}_R(N)\leqslant 1$ for every left $R$-module $N$ with $N\in \mathcal{F}_n$.
Keywords:
$n$-copure projective module, strongly copure injective module, (relative) hereditary ring, QF ring
Mots-clés : copure flat module.
Mots-clés : copure flat module.
@article{MZM_2015_97_1_a5,
author = {Zenghui Gao},
title = {$n${-Copure} {Projective} {Modules}},
journal = {Matemati\v{c}eskie zametki},
pages = {58--66},
publisher = {mathdoc},
volume = {97},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a5/}
}
Zenghui Gao. $n$-Copure Projective Modules. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 58-66. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a5/