The Maupertuis--Jacobi Principle for Hamiltonians of the Form~$F(x,|p|)$ in Two-Dimensional Stationary Semiclassical Problems
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 48-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two-dimensional asymptotic formulas based on the Maslov canonical operator arising in stationary problems for differential and pseudodifferential equations. In the case of Lagrangian manifolds invariant with respect to Hamiltonian flow with Hamiltonians of the form $F(x,|p|)$, we show how asymptotic formulas can be simplified by using the well-known (in classical mechanics) Maupertuis–Jacobi correspondence principle to replace the Hamiltonians $F(x,|p|)$ by Hamiltonians of the form $C(x)|p|$ arising, in particular, in geometric optics and related to the Finsler metric. As examples, we consider Hamiltonians corresponding to the Schrödinger equation, the two-dimensional Dirac equation, and the pseudodifferential equations for surface water waves.
Mots-clés : Maupertuis–Jacobi correspondence principle, Dirac equation
Keywords: Lagrangian manifold, Maslov canonical operator, Hamiltonian, Schrödinger equation, Hamiltonian flow, surface water wave, pseudodifferential equation.
@article{MZM_2015_97_1_a4,
     author = {S. Yu. Dobrokhotov and D. S. Minenkov and M. Rouleux},
     title = {The {Maupertuis--Jacobi} {Principle} for {Hamiltonians} of the {Form~}$F(x,|p|)$ in {Two-Dimensional} {Stationary} {Semiclassical} {Problems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {48--57},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a4/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - D. S. Minenkov
AU  - M. Rouleux
TI  - The Maupertuis--Jacobi Principle for Hamiltonians of the Form~$F(x,|p|)$ in Two-Dimensional Stationary Semiclassical Problems
JO  - Matematičeskie zametki
PY  - 2015
SP  - 48
EP  - 57
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a4/
LA  - ru
ID  - MZM_2015_97_1_a4
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A D. S. Minenkov
%A M. Rouleux
%T The Maupertuis--Jacobi Principle for Hamiltonians of the Form~$F(x,|p|)$ in Two-Dimensional Stationary Semiclassical Problems
%J Matematičeskie zametki
%D 2015
%P 48-57
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a4/
%G ru
%F MZM_2015_97_1_a4
S. Yu. Dobrokhotov; D. S. Minenkov; M. Rouleux. The Maupertuis--Jacobi Principle for Hamiltonians of the Form~$F(x,|p|)$ in Two-Dimensional Stationary Semiclassical Problems. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 48-57. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a4/

[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR | Zbl

[2] R. Abraham, J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings Publ., Reading, MA, 1978 | MR | Zbl

[3] A. V. Tsiganov, “The Maupertuis principle and canonical transformations of the extended phase space”, J. Nonlinear Math. Phys., 8:1 (2001), 157–182 | DOI | MR | Zbl

[4] S. Yu. Dobrokhotov, M. Rouleux, “The semi-classical Maupertuis–Jacobi correspondence for quasi-periodic Hamiltonian flows with applications to linear water waves theory”, Asymptot. Anal., 74:1-2 (2011), 33–73 | MR | Zbl

[5] S. Yu. Dobrokhotov, M. Rulo, “Kvaziklassicheskii analog printsipa Mopertyui–Yakobi i ego prilozhenie k lineinoi teorii voln na vode”, Matem. zametki, 87:3 (2010), 458–463 | DOI | MR | Zbl

[6] Sobolev Spaces in Mathematics. III. Applications in Mathematical Physics, Int. Math. Ser. (N. Y.), 10, Springer, 2009 | MR | Zbl

[7] A. B. Katok, “Ergodicheskie vozmuscheniya vyrozhdennykh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 37:3 (1973), 539–576 | MR | Zbl

[8] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “Novye formuly dlya kanonicheskogo operatora Maslova v okrestnosti fokalnykh tochek i kaustik v dvumernykh kvaziklassicheskikh asimptotikakh”, TMF, 177:3 (2013), 355–386 | DOI

[9] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[10] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized wave and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl

[11] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[12] B. R. Vainberg, Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, Izd-vo Mosk. un-ta, M., 1982 | MR | Zbl

[13] V. V. Kucherenko, “Kvaziklassicheskaya asimptotika funktsii tochechnogo istochnika dlya statsionarnogo uravneniya Shredingera”, TMF, 1:3 (1969), 384–406 | MR

[14] M. I. Katsnelson, Graphene. Carbon in Two Dimensions, Cambridge Univ. Press, Cambridge, 2012

[15] S. Yu. Dobrokhotov, “Metody Maslova v lineinoi teorii gravitatsionnykh voln na poverkhnosti zhidkosti”, Dokl. AN SSSR, 269:1 (1983), 76–80 | MR | Zbl

[16] S. Dobrokhotov, P. Zhevandrov, “Asymptotic expansions and the Maslov canonical operator in the linear theory of water waves. I. Main constructions and equations for surface gravity waves”, Russ. J. Math. Phys., 10:1 (2003), 1–31 | MR | Zbl