Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_1_a4, author = {S. Yu. Dobrokhotov and D. S. Minenkov and M. Rouleux}, title = {The {Maupertuis--Jacobi} {Principle} for {Hamiltonians} of the {Form~}$F(x,|p|)$ in {Two-Dimensional} {Stationary} {Semiclassical} {Problems}}, journal = {Matemati\v{c}eskie zametki}, pages = {48--57}, publisher = {mathdoc}, volume = {97}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a4/} }
TY - JOUR AU - S. Yu. Dobrokhotov AU - D. S. Minenkov AU - M. Rouleux TI - The Maupertuis--Jacobi Principle for Hamiltonians of the Form~$F(x,|p|)$ in Two-Dimensional Stationary Semiclassical Problems JO - Matematičeskie zametki PY - 2015 SP - 48 EP - 57 VL - 97 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a4/ LA - ru ID - MZM_2015_97_1_a4 ER -
%0 Journal Article %A S. Yu. Dobrokhotov %A D. S. Minenkov %A M. Rouleux %T The Maupertuis--Jacobi Principle for Hamiltonians of the Form~$F(x,|p|)$ in Two-Dimensional Stationary Semiclassical Problems %J Matematičeskie zametki %D 2015 %P 48-57 %V 97 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a4/ %G ru %F MZM_2015_97_1_a4
S. Yu. Dobrokhotov; D. S. Minenkov; M. Rouleux. The Maupertuis--Jacobi Principle for Hamiltonians of the Form~$F(x,|p|)$ in Two-Dimensional Stationary Semiclassical Problems. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 48-57. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a4/
[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR | Zbl
[2] R. Abraham, J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings Publ., Reading, MA, 1978 | MR | Zbl
[3] A. V. Tsiganov, “The Maupertuis principle and canonical transformations of the extended phase space”, J. Nonlinear Math. Phys., 8:1 (2001), 157–182 | DOI | MR | Zbl
[4] S. Yu. Dobrokhotov, M. Rouleux, “The semi-classical Maupertuis–Jacobi correspondence for quasi-periodic Hamiltonian flows with applications to linear water waves theory”, Asymptot. Anal., 74:1-2 (2011), 33–73 | MR | Zbl
[5] S. Yu. Dobrokhotov, M. Rulo, “Kvaziklassicheskii analog printsipa Mopertyui–Yakobi i ego prilozhenie k lineinoi teorii voln na vode”, Matem. zametki, 87:3 (2010), 458–463 | DOI | MR | Zbl
[6] Sobolev Spaces in Mathematics. III. Applications in Mathematical Physics, Int. Math. Ser. (N. Y.), 10, Springer, 2009 | MR | Zbl
[7] A. B. Katok, “Ergodicheskie vozmuscheniya vyrozhdennykh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 37:3 (1973), 539–576 | MR | Zbl
[8] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “Novye formuly dlya kanonicheskogo operatora Maslova v okrestnosti fokalnykh tochek i kaustik v dvumernykh kvaziklassicheskikh asimptotikakh”, TMF, 177:3 (2013), 355–386 | DOI
[9] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[10] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized wave and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl
[11] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965
[12] B. R. Vainberg, Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, Izd-vo Mosk. un-ta, M., 1982 | MR | Zbl
[13] V. V. Kucherenko, “Kvaziklassicheskaya asimptotika funktsii tochechnogo istochnika dlya statsionarnogo uravneniya Shredingera”, TMF, 1:3 (1969), 384–406 | MR
[14] M. I. Katsnelson, Graphene. Carbon in Two Dimensions, Cambridge Univ. Press, Cambridge, 2012
[15] S. Yu. Dobrokhotov, “Metody Maslova v lineinoi teorii gravitatsionnykh voln na poverkhnosti zhidkosti”, Dokl. AN SSSR, 269:1 (1983), 76–80 | MR | Zbl
[16] S. Dobrokhotov, P. Zhevandrov, “Asymptotic expansions and the Maslov canonical operator in the linear theory of water waves. I. Main constructions and equations for surface gravity waves”, Russ. J. Math. Phys., 10:1 (2003), 1–31 | MR | Zbl