Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_1_a2, author = {V. V. Bulankina and A. B. Kupavskii and A. A. Polyanskii}, title = {On {Schur's} {Conjecture} in $\mathbb R^4$}, journal = {Matemati\v{c}eskie zametki}, pages = {23--34}, publisher = {mathdoc}, volume = {97}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a2/} }
V. V. Bulankina; A. B. Kupavskii; A. A. Polyanskii. On Schur's Conjecture in $\mathbb R^4$. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a2/
[1] P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry, Springer-Verlag, Berlin, 2005 | MR | Zbl
[2] A. M. Raigorodskii, “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (2001), 107–146 | DOI | MR | Zbl
[3] A. M. Raigorodskii, “Vokrug gipotezy Borsuka”, Geometriya i mekhanika, SMFN, 23, RUDN, M., 2007, 147–164 | MR | Zbl
[4] A. M. Raigorodskii, “Three lectures on the Borsuk partition problem”, Surveys in Contemporary Mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 202–247 | MR | Zbl
[5] K. Borsuk, “Drei Sätze über die $n$-dimensionale euklidische Sphäre”, Fund. Math., 20 (1933), 177–190 | Zbl
[6] J. Kahn, G. Kalai, “A counterexample to Borsuk's conjecture”, Bull. Amer. Math. Soc. (N.S.), 29:1 (1993), 60–62 | DOI | MR | Zbl
[7] V. L. Dol'nikov, “Some properties of graphs of diameters”, Discrete Comput. Geom., 24:2-3 (2000), 293–299 | DOI | MR | Zbl
[8] A. Heppes, P. Révész, “Zum Borsukschen Zerteilungsproblem”, Acta Math. Acad. Sci. Hungar, 7:2 (1956), 159–162 | DOI | MR | Zbl
[9] H. Hopf, E. Pannwitz, “Aufgabe 167”, Jahresbericht Deutsch. Math.-Verein., 43 (1934), 114 | Zbl
[10] B. Grünbaum, “A proof of Vászonyi's conjecture”, Bull. Res. Council Israel. Sect. A, 6 (1956), 77–78 | MR | Zbl
[11] A. Heppes, “Beweis einer Vermutung von A. Vázsonyi”, Acta Math. Acad. Sci. Hungar., 7:3-4 (1956), 463–466 | DOI | MR | Zbl
[12] S. Straszewicz, “Sur un problème géométrique de P. Erdős”, Bull. Acad. Polon. Sci. Cl. III, 5 (1957), 39–40 | MR | Zbl
[13] Z. Schur, M. A. Perles, H. Martini, Y. S. Kupitz, “On the number of maximal regular simplices determined by $n$ points in $\mathbb R^d$”, Discrete and Computational Geometry, Algorithms Combin., 25, Springer-Verlag, Berlin, 2003, 767–787 | MR | Zbl
[14] F. Morić, J. Pach, “Remarks on Schur's conjecture”, Computational Geometry and Graphs, Lecture Notes in Comput. Sci., 8296, Springer-Verlag, Berlin, 2013, 120–131 | Zbl
[15] K. J. Swanepoel, “Unit distances and diameters in Euclidean spaces”, Discrete Comput. Geom., 41:1 (2009), 1–27 | DOI | MR | Zbl