On Schur's Conjecture in $\mathbb R^4$
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 23-34

Voir la notice de l'article provenant de la source Math-Net.Ru

A diameter graph in $\mathbb R^d$ is a graph in which vertices are points of a finite subset of $\mathbb R^d$ and two vertices are joined by an edge if the distance between them is equal to the diameter of the vertex set. This paper is devoted to Schur's conjecture, which asserts that any diameter graph on $n$ vertices in $\mathbb R^d$ contains at most $n$ complete subgraphs of size $d$. It is known that Schur's conjecture is true in dimensions $d\le 3$. We prove this conjecture for $d=4$ and give a simple proof for $d=3$.
Keywords: diameter graph, Schur's conjecture
Mots-clés : Borsuk's conjecture.
@article{MZM_2015_97_1_a2,
     author = {V. V. Bulankina and A. B. Kupavskii and A. A. Polyanskii},
     title = {On {Schur's} {Conjecture} in $\mathbb R^4$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {23--34},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a2/}
}
TY  - JOUR
AU  - V. V. Bulankina
AU  - A. B. Kupavskii
AU  - A. A. Polyanskii
TI  - On Schur's Conjecture in $\mathbb R^4$
JO  - Matematičeskie zametki
PY  - 2015
SP  - 23
EP  - 34
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a2/
LA  - ru
ID  - MZM_2015_97_1_a2
ER  - 
%0 Journal Article
%A V. V. Bulankina
%A A. B. Kupavskii
%A A. A. Polyanskii
%T On Schur's Conjecture in $\mathbb R^4$
%J Matematičeskie zametki
%D 2015
%P 23-34
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a2/
%G ru
%F MZM_2015_97_1_a2
V. V. Bulankina; A. B. Kupavskii; A. A. Polyanskii. On Schur's Conjecture in $\mathbb R^4$. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a2/