On Schur's Conjecture in $\mathbb R^4$
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 23-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

A diameter graph in $\mathbb R^d$ is a graph in which vertices are points of a finite subset of $\mathbb R^d$ and two vertices are joined by an edge if the distance between them is equal to the diameter of the vertex set. This paper is devoted to Schur's conjecture, which asserts that any diameter graph on $n$ vertices in $\mathbb R^d$ contains at most $n$ complete subgraphs of size $d$. It is known that Schur's conjecture is true in dimensions $d\le 3$. We prove this conjecture for $d=4$ and give a simple proof for $d=3$.
Keywords: diameter graph, Schur's conjecture
Mots-clés : Borsuk's conjecture.
@article{MZM_2015_97_1_a2,
     author = {V. V. Bulankina and A. B. Kupavskii and A. A. Polyanskii},
     title = {On {Schur's} {Conjecture} in $\mathbb R^4$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {23--34},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a2/}
}
TY  - JOUR
AU  - V. V. Bulankina
AU  - A. B. Kupavskii
AU  - A. A. Polyanskii
TI  - On Schur's Conjecture in $\mathbb R^4$
JO  - Matematičeskie zametki
PY  - 2015
SP  - 23
EP  - 34
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a2/
LA  - ru
ID  - MZM_2015_97_1_a2
ER  - 
%0 Journal Article
%A V. V. Bulankina
%A A. B. Kupavskii
%A A. A. Polyanskii
%T On Schur's Conjecture in $\mathbb R^4$
%J Matematičeskie zametki
%D 2015
%P 23-34
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a2/
%G ru
%F MZM_2015_97_1_a2
V. V. Bulankina; A. B. Kupavskii; A. A. Polyanskii. On Schur's Conjecture in $\mathbb R^4$. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a2/

[1] P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry, Springer-Verlag, Berlin, 2005 | MR | Zbl

[2] A. M. Raigorodskii, “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (2001), 107–146 | DOI | MR | Zbl

[3] A. M. Raigorodskii, “Vokrug gipotezy Borsuka”, Geometriya i mekhanika, SMFN, 23, RUDN, M., 2007, 147–164 | MR | Zbl

[4] A. M. Raigorodskii, “Three lectures on the Borsuk partition problem”, Surveys in Contemporary Mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 202–247 | MR | Zbl

[5] K. Borsuk, “Drei Sätze über die $n$-dimensionale euklidische Sphäre”, Fund. Math., 20 (1933), 177–190 | Zbl

[6] J. Kahn, G. Kalai, “A counterexample to Borsuk's conjecture”, Bull. Amer. Math. Soc. (N.S.), 29:1 (1993), 60–62 | DOI | MR | Zbl

[7] V. L. Dol'nikov, “Some properties of graphs of diameters”, Discrete Comput. Geom., 24:2-3 (2000), 293–299 | DOI | MR | Zbl

[8] A. Heppes, P. Révész, “Zum Borsukschen Zerteilungsproblem”, Acta Math. Acad. Sci. Hungar, 7:2 (1956), 159–162 | DOI | MR | Zbl

[9] H. Hopf, E. Pannwitz, “Aufgabe 167”, Jahresbericht Deutsch. Math.-Verein., 43 (1934), 114 | Zbl

[10] B. Grünbaum, “A proof of Vászonyi's conjecture”, Bull. Res. Council Israel. Sect. A, 6 (1956), 77–78 | MR | Zbl

[11] A. Heppes, “Beweis einer Vermutung von A. Vázsonyi”, Acta Math. Acad. Sci. Hungar., 7:3-4 (1956), 463–466 | DOI | MR | Zbl

[12] S. Straszewicz, “Sur un problème géométrique de P. Erdős”, Bull. Acad. Polon. Sci. Cl. III, 5 (1957), 39–40 | MR | Zbl

[13] Z. Schur, M. A. Perles, H. Martini, Y. S. Kupitz, “On the number of maximal regular simplices determined by $n$ points in $\mathbb R^d$”, Discrete and Computational Geometry, Algorithms Combin., 25, Springer-Verlag, Berlin, 2003, 767–787 | MR | Zbl

[14] F. Morić, J. Pach, “Remarks on Schur's conjecture”, Computational Geometry and Graphs, Lecture Notes in Comput. Sci., 8296, Springer-Verlag, Berlin, 2013, 120–131 | Zbl

[15] K. J. Swanepoel, “Unit distances and diameters in Euclidean spaces”, Discrete Comput. Geom., 41:1 (2009), 1–27 | DOI | MR | Zbl