Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_97_1_a12, author = {I. A. Taimanov}, title = {The {Moutard} {Transformation} of {Two-Dimensional} {Dirac} {Operators} and {M\"obius} {Geometry}}, journal = {Matemati\v{c}eskie zametki}, pages = {129--141}, publisher = {mathdoc}, volume = {97}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a12/} }
I. A. Taimanov. The Moutard Transformation of Two-Dimensional Dirac Operators and M\"obius Geometry. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 129-141. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a12/
[1] D. Yu, Q. P. Liu, Sh. Wang, “Darboux transformation for the modified Veselov–Novikov equation”, J. Phys. A, 35:16 (2002), 3779–3785 | MR
[2] B. G. Konopelchenko, “Induced surfaces and their integrable dynamics”, Stud. Appl. Math., 96 (1996), 9–51 | MR | Zbl
[3] I. A. Taimanov, “Modified Novikov–Veselov equation and differential geometry of surfaces”, Solitons, Geometry, and Topology: on the Crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 133–151 | MR | Zbl
[4] I. A. Taimanov, “Dvumernyi operator Diraka i teoriya poverkhnostei”, UMN, 61:1 (2006), 85–164 | DOI | MR | Zbl
[5] I. A. Taimanov, “Predstavlenie Veiershtrassa sfer v $\mathbb R^3$, chisla Uillmora i solitonnye sfery”, Solitony, geometriya, topologiya — na perekrestkakh, Tr. MIAN, 225, Nauka, M., 1999, 339–361 | MR | Zbl
[6] L. V. Bogdanov, “Uravnenie Veselova–Novikova kak estestvennoe dvumernoe obobschenie uravneniya Kortevega–de Friza”, TMF, 70:2 (1987), 309–314 | MR | Zbl
[7] I. A. Taimanov, “Predstavlenie Veiershtrassa zamknutykh poverkhnostei v $\mathbb{R}^3$”, Funkts. analiz i ego pril., 32:4 (1998), 49–62 | DOI | MR | Zbl
[8] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Uravnenie Shredingera v periodicheskom pole i rimanovy poverkhnosti”, Dokl. AN SSSR, 229:1 (1976), 15–18 | Zbl
[9] P. G. Grinevich, M. U. Schmidt, “Conformal invariant functionals of immersions of tori into $\mathbb{R}^3$”, J. Geom. Phys., 26:1-2 (1997), 51–78 | DOI | MR | Zbl
[10] P. G. Grinevich, I. A. Taimanov, “Infinitesimal Darboux transformations of the spectral curves of tori in the four-space”, Int. Math. Res. Not. IMRN, 2007, no. 2, Art. ID rnm005 | MR | Zbl
[11] I. A. Taimanov, S. P. Tsarev, “Dvumernye ratsionalnye solitony, postroennye s pomoschyu preobrazovanii Mutara, i ikh raspad”, TMF, 157:2 (2008), 188–207 | DOI | MR | Zbl
[12] C. Bohle, G. P. Peters, “Soliton spheres”, Trans. Amer. Math. Soc., 363:10 (2011), 5419–5463 | DOI | MR | Zbl
[13] B. G. Konopelchenko, “Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy”, Ann. Global Anal. Geom., 18:1 (2000), 61–74 | DOI | MR | Zbl
[14] I. A. Taimanov, “Surfaces in the four-space and the Davey–Stewartson equations”, J. Geom. Phys., 56:8 (2006), 1235–1256 | DOI | MR | Zbl