The Moutard Transformation of Two-Dimensional Dirac Operators and M\"obius Geometry
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 129-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the action of inversion on given Weierstrass representations for surfaces and show that the Moutard transformation of two-dimensional Dirac operators maps the potential (the Weierstrass representation) of a surface $S$ to the potential of a surface $\widetilde{S}$ obtained from $S$ by inversion.
Mots-clés : Moutard transformation, inversion, conformal immersion of a domain.
Keywords: two-dimensional Dirac operator, Möbius geometry, Weierstrass representation for surfaces
@article{MZM_2015_97_1_a12,
     author = {I. A. Taimanov},
     title = {The {Moutard} {Transformation} of {Two-Dimensional} {Dirac} {Operators} and {M\"obius} {Geometry}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--141},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a12/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - The Moutard Transformation of Two-Dimensional Dirac Operators and M\"obius Geometry
JO  - Matematičeskie zametki
PY  - 2015
SP  - 129
EP  - 141
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a12/
LA  - ru
ID  - MZM_2015_97_1_a12
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T The Moutard Transformation of Two-Dimensional Dirac Operators and M\"obius Geometry
%J Matematičeskie zametki
%D 2015
%P 129-141
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a12/
%G ru
%F MZM_2015_97_1_a12
I. A. Taimanov. The Moutard Transformation of Two-Dimensional Dirac Operators and M\"obius Geometry. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 129-141. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a12/

[1] D. Yu, Q. P. Liu, Sh. Wang, “Darboux transformation for the modified Veselov–Novikov equation”, J. Phys. A, 35:16 (2002), 3779–3785 | MR

[2] B. G. Konopelchenko, “Induced surfaces and their integrable dynamics”, Stud. Appl. Math., 96 (1996), 9–51 | MR | Zbl

[3] I. A. Taimanov, “Modified Novikov–Veselov equation and differential geometry of surfaces”, Solitons, Geometry, and Topology: on the Crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 133–151 | MR | Zbl

[4] I. A. Taimanov, “Dvumernyi operator Diraka i teoriya poverkhnostei”, UMN, 61:1 (2006), 85–164 | DOI | MR | Zbl

[5] I. A. Taimanov, “Predstavlenie Veiershtrassa sfer v $\mathbb R^3$, chisla Uillmora i solitonnye sfery”, Solitony, geometriya, topologiya — na perekrestkakh, Tr. MIAN, 225, Nauka, M., 1999, 339–361 | MR | Zbl

[6] L. V. Bogdanov, “Uravnenie Veselova–Novikova kak estestvennoe dvumernoe obobschenie uravneniya Kortevega–de Friza”, TMF, 70:2 (1987), 309–314 | MR | Zbl

[7] I. A. Taimanov, “Predstavlenie Veiershtrassa zamknutykh poverkhnostei v $\mathbb{R}^3$”, Funkts. analiz i ego pril., 32:4 (1998), 49–62 | DOI | MR | Zbl

[8] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Uravnenie Shredingera v periodicheskom pole i rimanovy poverkhnosti”, Dokl. AN SSSR, 229:1 (1976), 15–18 | Zbl

[9] P. G. Grinevich, M. U. Schmidt, “Conformal invariant functionals of immersions of tori into $\mathbb{R}^3$”, J. Geom. Phys., 26:1-2 (1997), 51–78 | DOI | MR | Zbl

[10] P. G. Grinevich, I. A. Taimanov, “Infinitesimal Darboux transformations of the spectral curves of tori in the four-space”, Int. Math. Res. Not. IMRN, 2007, no. 2, Art. ID rnm005 | MR | Zbl

[11] I. A. Taimanov, S. P. Tsarev, “Dvumernye ratsionalnye solitony, postroennye s pomoschyu preobrazovanii Mutara, i ikh raspad”, TMF, 157:2 (2008), 188–207 | DOI | MR | Zbl

[12] C. Bohle, G. P. Peters, “Soliton spheres”, Trans. Amer. Math. Soc., 363:10 (2011), 5419–5463 | DOI | MR | Zbl

[13] B. G. Konopelchenko, “Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy”, Ann. Global Anal. Geom., 18:1 (2000), 61–74 | DOI | MR | Zbl

[14] I. A. Taimanov, “Surfaces in the four-space and the Davey–Stewartson equations”, J. Geom. Phys., 56:8 (2006), 1235–1256 | DOI | MR | Zbl