The Moutard Transformation of Two-Dimensional Dirac Operators and M\"obius Geometry
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 129-141

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the action of inversion on given Weierstrass representations for surfaces and show that the Moutard transformation of two-dimensional Dirac operators maps the potential (the Weierstrass representation) of a surface $S$ to the potential of a surface $\widetilde{S}$ obtained from $S$ by inversion.
Mots-clés : Moutard transformation, inversion, conformal immersion of a domain.
Keywords: two-dimensional Dirac operator, Möbius geometry, Weierstrass representation for surfaces
@article{MZM_2015_97_1_a12,
     author = {I. A. Taimanov},
     title = {The {Moutard} {Transformation} of {Two-Dimensional} {Dirac} {Operators} and {M\"obius} {Geometry}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--141},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a12/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - The Moutard Transformation of Two-Dimensional Dirac Operators and M\"obius Geometry
JO  - Matematičeskie zametki
PY  - 2015
SP  - 129
EP  - 141
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a12/
LA  - ru
ID  - MZM_2015_97_1_a12
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T The Moutard Transformation of Two-Dimensional Dirac Operators and M\"obius Geometry
%J Matematičeskie zametki
%D 2015
%P 129-141
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a12/
%G ru
%F MZM_2015_97_1_a12
I. A. Taimanov. The Moutard Transformation of Two-Dimensional Dirac Operators and M\"obius Geometry. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 129-141. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a12/