Artin--Hasse Exponential Mapping, Algebraic Groups in Positive Characteristic, and the Nottingham Group
Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Connected commutative subgroups of the prounipotent radical of the group of formal power series in one variable over an algebraically closed field of positive characteristic with respect to the operation of substitution are studied.
Keywords: Artin–Hasse exponential mapping, group of formal power series, algebraically closed field.
Mots-clés : prounipotent radical
@article{MZM_2015_97_1_a0,
     author = {Ya. V. Abramov},
     title = {Artin--Hasse {Exponential} {Mapping,} {Algebraic} {Groups} in {Positive} {Characteristic,} and the {Nottingham} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a0/}
}
TY  - JOUR
AU  - Ya. V. Abramov
TI  - Artin--Hasse Exponential Mapping, Algebraic Groups in Positive Characteristic, and the Nottingham Group
JO  - Matematičeskie zametki
PY  - 2015
SP  - 3
EP  - 12
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a0/
LA  - ru
ID  - MZM_2015_97_1_a0
ER  - 
%0 Journal Article
%A Ya. V. Abramov
%T Artin--Hasse Exponential Mapping, Algebraic Groups in Positive Characteristic, and the Nottingham Group
%J Matematičeskie zametki
%D 2015
%P 3-12
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a0/
%G ru
%F MZM_2015_97_1_a0
Ya. V. Abramov. Artin--Hasse Exponential Mapping, Algebraic Groups in Positive Characteristic, and the Nottingham Group. Matematičeskie zametki, Tome 97 (2015) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/MZM_2015_97_1_a0/

[1] J. P. Serre, Groupes Pro-agebraiques, Publ. Math. IHES No 7, 1990

[2] R. Camina, “Subgroups of Nottingham group”, J. Algebra, 196 (1997), 101–113 | DOI | MR | Zbl

[3] B. Klopsch, “Automorphisms of the Nottingham Group”, J. Algebra, 223:1 (2000), 37–56 | DOI | MR | Zbl

[4] P. P. Palfy, “The number of conjugacy classes in some quotients of the Nottingham group”, Proc. Edinburgh Math. Soc. (2), 41:02 (1998), 369–384 | DOI | MR | Zbl

[5] M. Ershov, “New just-infinite pro-p groups of finite width and subgroups of the Nottingham group”, J. Algebra, 275:1 (2004), 419–449 | DOI | MR | Zbl

[6] M. Ershov, “On subgroups of the Nottingham group of positive Hausdorff dimension”, Comm. Algebra, 35:1 (2007), 193–206 | DOI | MR | Zbl

[7] I. Fesenko, “On just infinite pro-p-groups and arithmetically pro-finite extensions of local felds”, J. Reine Angew. Math., 517 (1999), 61–80 | MR | Zbl

[8] J.-P. Wintenberger, “Extensions abéliennes et groupes dautomorphismes de corps locaux”, C. R. Acad. Sci. Paris Sér. A-B, 290:5 (1980), A201–A203 | MR | Zbl

[9] I. K. Babenko,, “Algebra, geometriya i topologiya gruppy podstanovok formalnykh stepennykh ryadov”, UMN, 68:1 (2013), 3–76 | DOI | MR | Zbl

[10] M. Hazewinkel, Witt Vectors. Part 1, arXiv: math.RA/0804.3888v1

[11] Zh. P. Serr, Algebraicheskie gruppy i polya klassov, Mir, M., 1968 | MR | Zbl

[12] A. M. Robert, A Course in $p$-Adic Analysis, Grad. Texts in Math., 198, Springer, New York, 2000 | MR | Zbl

[13] R. Proud, “Witt groups and unipotent elements in algebraic groups”, Proc. London Math. Soc. (3), 82:3 (2000), 647–675 | DOI | MR

[14] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR | Zbl

[15] J. C. Jantzen, Representations of Algebraic Groups, Pure Appl. Math., 131, Academic Press, Boston, MA, 1987 | MR | Zbl

[16] Y. Barnea, B. Klopsch, “Index-subgroups of the Nottingham group”, Adv. Math., 180:1 (2003), 187–221 | DOI | MR | Zbl