On Blaschke Products with Finite Dirichlet-Type Integral
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 880-884

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of functions with finite Dirichlet-type integral is defined as the set of holomorphic functions $f$ in the unit disk satisfying the following condition: $$ \int_{0}^{2\pi}\int_{0}^{1} (1-r)^{\alpha}|f'(re^{i\theta})|^{p} r\,dr\,d\theta,\qquad \alpha>-1,\quad 0

+\infty. $$ These classes are usually denoted by $D_{\alpha}^p$. In this paper, we prove the converse of Rudin's theorem and thus provide a necessary and sufficient condition for a Blaschke product to belong to the class $D_{0}^{1}$.
Keywords: Blaschke product, Dirichlet-type integral, Hardy class, holomorphic function.
@article{MZM_2014_96_6_a6,
     author = {R. V. Dallakjan},
     title = {On {Blaschke} {Products} with {Finite} {Dirichlet-Type} {Integral}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {880--884},
     publisher = {mathdoc},
     volume = {96},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a6/}
}
TY  - JOUR
AU  - R. V. Dallakjan
TI  - On Blaschke Products with Finite Dirichlet-Type Integral
JO  - Matematičeskie zametki
PY  - 2014
SP  - 880
EP  - 884
VL  - 96
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a6/
LA  - ru
ID  - MZM_2014_96_6_a6
ER  - 
%0 Journal Article
%A R. V. Dallakjan
%T On Blaschke Products with Finite Dirichlet-Type Integral
%J Matematičeskie zametki
%D 2014
%P 880-884
%V 96
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a6/
%G ru
%F MZM_2014_96_6_a6
R. V. Dallakjan. On Blaschke Products with Finite Dirichlet-Type Integral. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 880-884. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a6/