On Blaschke Products with Finite Dirichlet-Type Integral
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 880-884.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of functions with finite Dirichlet-type integral is defined as the set of holomorphic functions $f$ in the unit disk satisfying the following condition: $$ \int_{0}^{2\pi}\int_{0}^{1} (1-r)^{\alpha}|f'(re^{i\theta})|^{p} r\,dr\,d\theta,\qquad \alpha>-1,\quad 0

+\infty. $$ These classes are usually denoted by $D_{\alpha}^p$. In this paper, we prove the converse of Rudin's theorem and thus provide a necessary and sufficient condition for a Blaschke product to belong to the class $D_{0}^{1}$.
Keywords: Blaschke product, Dirichlet-type integral, Hardy class, holomorphic function.
@article{MZM_2014_96_6_a6,
     author = {R. V. Dallakjan},
     title = {On {Blaschke} {Products} with {Finite} {Dirichlet-Type} {Integral}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {880--884},
     publisher = {mathdoc},
     volume = {96},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a6/}
}
TY  - JOUR
AU  - R. V. Dallakjan
TI  - On Blaschke Products with Finite Dirichlet-Type Integral
JO  - Matematičeskie zametki
PY  - 2014
SP  - 880
EP  - 884
VL  - 96
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a6/
LA  - ru
ID  - MZM_2014_96_6_a6
ER  - 
%0 Journal Article
%A R. V. Dallakjan
%T On Blaschke Products with Finite Dirichlet-Type Integral
%J Matematičeskie zametki
%D 2014
%P 880-884
%V 96
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a6/
%G ru
%F MZM_2014_96_6_a6
R. V. Dallakjan. On Blaschke Products with Finite Dirichlet-Type Integral. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 880-884. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a6/

[1] S. A. Vinogradov, “Umnozhenie i delenie v prostranstve analiticheskikh funktsii s proizvodnoi, summiruemoi po ploschadi, i blizkikh k nemu prostranstvakh”, Issledovaniya po lineinym operatoram i teorii funktsii. 23, Zap. nauchn. sem. POMI, 222, POMI, SPb., 1995, 45–77 | MR | Zbl

[2] J. E. Littlewood, R. E. A. C. Paley, “Theorems on Fourier series and power series. II”, Proc. London Math. Soc., 42 (1936), 52–89 | MR | Zbl

[3] P. L. Duren, Theory of $H^{p}$ Spaces, Pure Appl. Math, 38, Acad. Press, New-York, 1970 | MR | Zbl

[4] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl

[5] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000 | MR | Zbl

[6] M. M. Dzhrbashyan, “K probleme predstavimosti analiticheskikh funktsii”, Soobsch. in-ta matem. i mekh. AN Arm. SSR, 1948, no. 2, 3–55

[7] A. E. Djrbashian, F. A. Shamoian, Topics in the Theory of $A^p_\alpha$ Spaces, Teubner-Texte Math., B. G. Teubner, Leipzig, 1988 | MR | Zbl

[8] W. Rudin, “The radial variation of analytic functions”, Duke Math. J., 22:2 (1955), 235–242 | DOI | MR | Zbl

[9] D. Girela, J. A. Palaez, D. Vukotic, “Integrability of the derivative of a Blaschke product”, Proc. Edinb. Math. Soc. (2), 50:3 (2007), 673–697 | DOI | MR | Zbl

[10] E. Kollingvud, A. Lovater, Teoriya predelnykh mnozhestv, Biblioteka sbornika “Matematika”, Mir, M., 1971 | MR | Zbl

[11] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR