The Energy Function of Gradient-Like Flows and the Topological Classification Problem
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 856-863.

Voir la notice de l'article provenant de la source Math-Net.Ru

For gradient-like flows without heteroclinic intersections of the stable and unstable manifolds of saddle periodic points all of whose saddle equilibrium states have Morse index 1 or $n-1$, the notion of consistent equivalence of energy functions is introduced. It is shown that the consistent equivalence of energy functions is necessary and sufficient for topological equivalence.
Keywords: energy function, gradient-like flow, consistently equivalent energy functions, topological equivalence, Morse function, Morse index, self-indexing energy function.
@article{MZM_2014_96_6_a4,
     author = {V. Z. Grines and E. Ya. Gurevich and O. V. Pochinka},
     title = {The {Energy} {Function} of {Gradient-Like} {Flows} and the {Topological} {Classification} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {856--863},
     publisher = {mathdoc},
     volume = {96},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a4/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. Ya. Gurevich
AU  - O. V. Pochinka
TI  - The Energy Function of Gradient-Like Flows and the Topological Classification Problem
JO  - Matematičeskie zametki
PY  - 2014
SP  - 856
EP  - 863
VL  - 96
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a4/
LA  - ru
ID  - MZM_2014_96_6_a4
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. Ya. Gurevich
%A O. V. Pochinka
%T The Energy Function of Gradient-Like Flows and the Topological Classification Problem
%J Matematičeskie zametki
%D 2014
%P 856-863
%V 96
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a4/
%G ru
%F MZM_2014_96_6_a4
V. Z. Grines; E. Ya. Gurevich; O. V. Pochinka. The Energy Function of Gradient-Like Flows and the Topological Classification Problem. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 856-863. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a4/

[1] Dzh. Milnor, Teoriya Morsa, Mir, M., 1965 | MR | Zbl

[2] S. Smale, “On gradient dynamical systems”, Ann. of Math. (2), 74:1 (1961), 199–206 | DOI | MR | Zbl

[3] K. R. Meyer, “Energy Functions for Morse–Smale Systems”, Amer. J. Math., 90:4 (1968), 1031–1040 | DOI | MR | Zbl

[4] R. Thom, “La stabilité topologique des applications polynomiales”, Enseign. Math. (2), 1:2 (1962), 24–33 | MR | Zbl

[5] A. A. Oshemkov, V. V. Sharko, “O klassifikatsii potokov Morsa–Smeila na dvumernykh mnogoobraziyakh”, Matem. sb., 189:8 (1998), 93–140 | DOI | MR | Zbl

[6] V. Z. Grines, O. V. Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu kaskadov na mnogoobraziyakh razmernosti dva i tri, IKI, Izhevsk, 2011

[7] V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, “Graf Peikshoto diffeomorfizmov Morsa–Smeila na mnogoobraziyakh razmernosti, bolshei trekh”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 261, MAIK, M., 2008, 61–86 | MR | Zbl

[8] Ya. L. Umanskii, “Neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti trekhmernykh dinamicheskikh sistem Morsa–Smeila s konechnym chislom osobykh traektorii”, Matem. sb., 181:2 (1990), 212–239 | MR | Zbl

[9] G. Fleitas, “Classification of gradient-like flows in dimension two and three”, Bol. Soc. Brasil. Mat., 6:2 (1975), 155–183 | DOI | MR | Zbl

[10] S. Yu. Pilyugin, “Fazovye diagrammy, opredelyayuschie sistemy Morsa–Smeila bez periodicheskikh traektorii na sferakh”, Differents. uravneniya, 14:2 (1978), 245–254 | Zbl

[11] A. O. Prishlyak, “Polnyi topologicheskii invariant potokov Morsa–Smeila i razlozhenii na ruchki trekhmernykh mnogoobrazii”, Fundament. i prikl. matem., 11:4 (2005), 185–196 | MR | Zbl