Best Mean-Square Approximations by Entire Functions of Exponential Type and Mean $\nu$-Widths of Classes of Functions on the Line
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 827-848

Voir la notice de l'article provenant de la source Math-Net.Ru

For the classes $L^r_2(\mathbb{R})$, $r\in \mathbb{Z}_{+}$, we establish the upper and lower bounds for the quantities $$ \chi_{\sigma,k,r,\mu,p}(\psi,t):=\sup\biggl\{\mathcal{A}_{\sigma} (f^{(r-\mu)})\Bigm/\biggl(\int_0^t \omega^p_k(f^{(r)},\tau) \psi(\tau)\,d\tau\biggr)^{1/p}:f \in L^r_2(\mathbb{R})\biggr\}, $$ where $\mu, r \in \mathbb{Z}_{+}$, $\mu \le r$, $k \in \mathbb{N}$, $0 p \le 2$, $0 \sigma \infty$, $0$, and $\psi$ is a nonnegative, measurable function summable on the closed interval $[0,t]$ and not equivalent to zero. In the cases $\chi_{\sigma,k,r,\mu,p}(1,t)$, where $\mu\in \mathbb{N}$, $1/\mu\le p \le 2$, and $\chi_{\sigma,k,r,\mu,2/k}(1,t)$, where $0$, we obtain the exact values of these quantities. We also obtain the exact values of the average $\nu$-widths of classes of functions defined in terms of the modulus of continuity $\omega^{*}$ and the majorant $\Psi$.
Keywords: entire function of exponential type, best mean-square approximation, average $\nu$-width, modulus of continuity, Jackson-type inequality, Plancherel's theorem, Paley–Wiener theorem, Hölder's inequality, Kolmogorov width, Bernstein width, Bernstein's inequality.
Mots-clés : Fourier transform, majorant
@article{MZM_2014_96_6_a2,
     author = {S. B. Vakarchuk},
     title = {Best {Mean-Square} {Approximations} by {Entire} {Functions} of {Exponential} {Type} and {Mean} $\nu${-Widths} of {Classes} of {Functions} on the {Line}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {827--848},
     publisher = {mathdoc},
     volume = {96},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a2/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
TI  - Best Mean-Square Approximations by Entire Functions of Exponential Type and Mean $\nu$-Widths of Classes of Functions on the Line
JO  - Matematičeskie zametki
PY  - 2014
SP  - 827
EP  - 848
VL  - 96
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a2/
LA  - ru
ID  - MZM_2014_96_6_a2
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%T Best Mean-Square Approximations by Entire Functions of Exponential Type and Mean $\nu$-Widths of Classes of Functions on the Line
%J Matematičeskie zametki
%D 2014
%P 827-848
%V 96
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a2/
%G ru
%F MZM_2014_96_6_a2
S. B. Vakarchuk. Best Mean-Square Approximations by Entire Functions of Exponential Type and Mean $\nu$-Widths of Classes of Functions on the Line. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 827-848. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a2/