Best Mean-Square Approximations by Entire Functions of Exponential Type and Mean $\nu$-Widths of Classes of Functions on the Line
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 827-848.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the classes $L^r_2(\mathbb{R})$, $r\in \mathbb{Z}_{+}$, we establish the upper and lower bounds for the quantities $$ \chi_{\sigma,k,r,\mu,p}(\psi,t):=\sup\biggl\{\mathcal{A}_{\sigma} (f^{(r-\mu)})\Bigm/\biggl(\int_0^t \omega^p_k(f^{(r)},\tau) \psi(\tau)\,d\tau\biggr)^{1/p}:f \in L^r_2(\mathbb{R})\biggr\}, $$ where $\mu, r \in \mathbb{Z}_{+}$, $\mu \le r$, $k \in \mathbb{N}$, $0 p \le 2$, $0 \sigma \infty$, $0$, and $\psi$ is a nonnegative, measurable function summable on the closed interval $[0,t]$ and not equivalent to zero. In the cases $\chi_{\sigma,k,r,\mu,p}(1,t)$, where $\mu\in \mathbb{N}$, $1/\mu\le p \le 2$, and $\chi_{\sigma,k,r,\mu,2/k}(1,t)$, where $0$, we obtain the exact values of these quantities. We also obtain the exact values of the average $\nu$-widths of classes of functions defined in terms of the modulus of continuity $\omega^{*}$ and the majorant $\Psi$.
Keywords: entire function of exponential type, best mean-square approximation, average $\nu$-width, modulus of continuity, Jackson-type inequality, Plancherel's theorem, Paley–Wiener theorem, Hölder's inequality, Kolmogorov width, Bernstein width, Bernstein's inequality.
Mots-clés : Fourier transform, majorant
@article{MZM_2014_96_6_a2,
     author = {S. B. Vakarchuk},
     title = {Best {Mean-Square} {Approximations} by {Entire} {Functions} of {Exponential} {Type} and {Mean} $\nu${-Widths} of {Classes} of {Functions} on the {Line}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {827--848},
     publisher = {mathdoc},
     volume = {96},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a2/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
TI  - Best Mean-Square Approximations by Entire Functions of Exponential Type and Mean $\nu$-Widths of Classes of Functions on the Line
JO  - Matematičeskie zametki
PY  - 2014
SP  - 827
EP  - 848
VL  - 96
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a2/
LA  - ru
ID  - MZM_2014_96_6_a2
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%T Best Mean-Square Approximations by Entire Functions of Exponential Type and Mean $\nu$-Widths of Classes of Functions on the Line
%J Matematičeskie zametki
%D 2014
%P 827-848
%V 96
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a2/
%G ru
%F MZM_2014_96_6_a2
S. B. Vakarchuk. Best Mean-Square Approximations by Entire Functions of Exponential Type and Mean $\nu$-Widths of Classes of Functions on the Line. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 827-848. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a2/

[1] S. N. Bernshtein, “O nailuchshem priblizhenii nepreryvnykh funktsii na vsei veschestvennoi osi pri pomoschi tselykh funktsii dannoi stepeni”, Sobranie sochinenii, T. 2, AN SSSR, M., 1952, 371–375

[2] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl

[3] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatlit, M., 1960 | MR

[4] M. F. Timan, “Priblizhenie funktsii, zadannykh na vsei veschestvennoi osi, tselymi funktsiyami eksponentsialnogo tipa”, Izv. vuzov. Matem., 1968, no. 2, 89–101 | MR | Zbl

[5] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR | Zbl

[6] I. I. Ibragimov, Teoriya priblizheniya tselymi funktsiyami, Elm, Baku, 1979 | MR

[7] I. I. Ibragimov, F. G. Nasibov, “Ob otsenke nailuchshego priblizheniya summiruemoi funktsii na veschestvennoi osi posredstvom tselykh funktsii konechnoi stepeni”, Dokl. AN SSSR, 194:5 (1970), 1013–1016 | MR | Zbl

[8] V. Yu. Popov, “O nailuchshikh srednekvadraticheskikh priblizheniyakh tselymi funktsiyami eksponentsialnogo tipa”, Izv. vuzov. Matem., 1972, no. 6, 65–73 | MR | Zbl

[9] F. G. Nasibov, “O priblizhenii v $L_2$ tselymi funktsiyami”, Dokl. AN Azerb. SSR, 42:4 (1986), 3–6 | MR | Zbl

[10] A. G. Babenko, “Tochnoe neravenstvo Dzheksona–Stechkina v prostranstve $L^2(\mathbb R^m)$”, Sbornik nauchnykh trudov, Tr. IMM UrO RAN, 5, 1998, 183–198 | Zbl

[11] V. G. Doronin, A. A. Ligun, “O tochnykh neravenstvakh tipa Dzheksona dlya tselykh funktsii v $L_2$”, Visnik Dnipropetrovskogo un-tu. Ser. matem., 15:8 (2007), 89–93

[12] A. A. Ligun, V. G. Doronin, “Tochnye konstanty v neravenstvakh tipa Dzheksona dlya $L_2$-approksimatsii na pryamoi”, Ukr. matem. zhurn., 61:1 (2009), 92–98 | MR | Zbl

[13] V. V. Arestov, “On Jackson inequalities for approxination in $L^2$ of periodic functions by trigonometric polynomials and of functions on the line by entire functions”, Approxim Theory, M. Drinov Acad. Publ. House, Sofia, 2004, 1–19 | MR

[14] S. B. Vakarchuk, “Exact constant in an inequality of Jackson type for $L_2$-approximatiuon on the line and exact values of mean widths of functional classes”, East J. Approx., 10:1-2 (2004), 27–39 | MR | Zbl

[15] S. B. Vakarchuk, M. B. Vakarchuk, “O nailuchshem srednekvadraticheskom priblizhenii tselymi funktsiyami konechnoi stepeni na pryamoi”, Visnik Dnipropetrovskogo un-tu. Ser. matem., 17:6/1 (2009), 36–41

[16] S. B. Vakarchuk, V. G. Doronin, “Nailuchshie srednekvadraticheskie priblizheniya tselymi funktsiyami konechnoi stepeni na pryamoi i tochnye znacheniya srednikh poperechnikov funktsionalnykh klassov”, Ukr. matem. zhurn., 62:8 (2010), 1032–1043 | MR | Zbl

[17] S. N. Vasilev, “Neravenstvo Dzheksona–Stechkina v $L_2[-\pi,\pi]$”, Teoriya priblizhenii. Asimptoticheskie razlozheniya, Sbornik statei, Tr. IMM UrO RAN, 7, no. 1, 2001, 75–84 | MR | Zbl

[18] L. V. Taikov, “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | MR | Zbl

[19] E. Titchmarsh, Vvedenie v teoriyu integralov Fure, Gostekhizdat, M., 1948

[20] E. Bekkenbakh, R. Bellman, Neravenstva, Mir, M., 1965 | MR | Zbl

[21] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR | Zbl

[22] A. A. Ligun, “Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve $L_2$”, Matem. zametki, 24:6 (1978), 785–792 | MR | Zbl

[23] V. V. Shalaev, “O poperechnikakh v $L_2$ klassov differentsiruemykh funktsii, opredelyaemykh modulyami nepreryvnosti vysshikh poryadkov”, Ukr. matem. zhurn., 43:1 (1991), 125–129 | MR | Zbl

[24] S. B. Vakarchuk, “Neravenstva tipa Dzheksona i poperechniki klassov funktsii v $L_2$”, Matem. zametki, 80:1 (2006), 11–19 | DOI | MR | Zbl

[25] M. Sh. Shabozov, G. A. Yusupov, “Nailuchshie polinomialnye priblizheniya v $L_2$ nekotorykh klassov $2\pi$-periodicheskikh funktsii i tochnye znacheniya ikh poperechnikov”, Matem. zametki, 90:5 (2011), 764–775 | DOI | MR

[26] N. I. Akhiezer, Lektsii ob integralnykh preobrazovaniyakh, Vischa shkola, Kharkov, 1984 | MR

[27] V. D. Rybasenko, I. D. Rybasenko, Elementarnye funktsii. Formuly, tablitsy, grafiki, Nauka, M., 1987

[28] A. I. Guseinov, Kh. Sh. Mukhtarov, Vedenie v teoriyu nelineinykh singulyarnykh integralnykh uravnenii, Nauka, M., 1980 | MR

[29] G. G. Magaril-Ilyaev, “Srednyaya razmernost, poperechniki i optimalnoe vosstanovlenie sobolevskikh klassov funktsii na pryamoi”, Matem. sb., 182:11 (1991), 1635–1656 | MR | Zbl

[30] G. G. Magaril-Ilyaev, “Srednyaya razmernost i poperechniki klassov funktsii na pryamoi”, Dokl. AN SSSR, 318:1 (1991), 35–38 | MR | Zbl

[31] V. M. Tikhomirov, “Ob approksimativnykh kharakteristikakh gladkikh funktsii mnogikh peremennykh”, Teoriya kubaturnykh formul i vychislitelnaya matematika, Nauka, Novosibirsk, 1980, 183–188 | Zbl

[32] A. I. Shevchuk, Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii, Naukova dumka, Kiev, 1992