Bounded Subharmonic Functions Possess the Lebesgue Property at Each Point
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 921-925
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the restriction of a bounded subharmonic function in a domain $D\subset\nobreak \mathbb C$ to any real line $l\subset\mathbb C$ possesses the Lebesgue property at each point of $l\cap D$.
Keywords:
subharmonic function, Lebesgue property, thin set, thin point, Borel set, Diophantine number, logarithmic capacity.
Mots-clés : Lebesgue point
Mots-clés : Lebesgue point
@article{MZM_2014_96_6_a11,
author = {A. S. Sadullaev and S. A. Imomkulov and K. Kh. Rakhimov},
title = {Bounded {Subharmonic} {Functions} {Possess} the {Lebesgue} {Property} at {Each} {Point}},
journal = {Matemati\v{c}eskie zametki},
pages = {921--925},
year = {2014},
volume = {96},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a11/}
}
TY - JOUR AU - A. S. Sadullaev AU - S. A. Imomkulov AU - K. Kh. Rakhimov TI - Bounded Subharmonic Functions Possess the Lebesgue Property at Each Point JO - Matematičeskie zametki PY - 2014 SP - 921 EP - 925 VL - 96 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a11/ LA - ru ID - MZM_2014_96_6_a11 ER -
A. S. Sadullaev; S. A. Imomkulov; K. Kh. Rakhimov. Bounded Subharmonic Functions Possess the Lebesgue Property at Each Point. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 921-925. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a11/
[1] M. Brelo, Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl
[2] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl
[3] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math., 659, Springer-Verlag, Berlin, 1978 | DOI | MR | Zbl
[4] D. Pompeiu, “Sur les fonctions dérivées”, Math. Ann., 63:3 (1907), 326–332 | DOI | MR | Zbl
[5] A. Denjoy, “Sur les fonctions dérivées sommables”, Bull. Soc. Math. France, 43 (1915), 161–248 | MR | Zbl
[6] G. A. Kalyabin, “Novye primery funktsii Pompeiyu”, Mezhdunarodnaya konferentsiya “Teoriya funktsii i funktsionalnyi analiz”, Tezisy, Astana, 2012, 47–48