Bounded Subharmonic Functions Possess the Lebesgue Property at Each Point
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 921-925.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the restriction of a bounded subharmonic function in a domain $D\subset\nobreak \mathbb C$ to any real line $l\subset\mathbb C$ possesses the Lebesgue property at each point of $l\cap D$.
Keywords: subharmonic function, Lebesgue property, thin set, thin point, Borel set, Diophantine number, logarithmic capacity.
Mots-clés : Lebesgue point
@article{MZM_2014_96_6_a11,
     author = {A. S. Sadullaev and S. A. Imomkulov and K. Kh. Rakhimov},
     title = {Bounded {Subharmonic} {Functions} {Possess} the {Lebesgue} {Property} at {Each} {Point}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {921--925},
     publisher = {mathdoc},
     volume = {96},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a11/}
}
TY  - JOUR
AU  - A. S. Sadullaev
AU  - S. A. Imomkulov
AU  - K. Kh. Rakhimov
TI  - Bounded Subharmonic Functions Possess the Lebesgue Property at Each Point
JO  - Matematičeskie zametki
PY  - 2014
SP  - 921
EP  - 925
VL  - 96
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a11/
LA  - ru
ID  - MZM_2014_96_6_a11
ER  - 
%0 Journal Article
%A A. S. Sadullaev
%A S. A. Imomkulov
%A K. Kh. Rakhimov
%T Bounded Subharmonic Functions Possess the Lebesgue Property at Each Point
%J Matematičeskie zametki
%D 2014
%P 921-925
%V 96
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a11/
%G ru
%F MZM_2014_96_6_a11
A. S. Sadullaev; S. A. Imomkulov; K. Kh. Rakhimov. Bounded Subharmonic Functions Possess the Lebesgue Property at Each Point. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 921-925. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a11/

[1] M. Brelo, Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl

[2] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[3] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math., 659, Springer-Verlag, Berlin, 1978 | DOI | MR | Zbl

[4] D. Pompeiu, “Sur les fonctions dérivées”, Math. Ann., 63:3 (1907), 326–332 | DOI | MR | Zbl

[5] A. Denjoy, “Sur les fonctions dérivées sommables”, Bull. Soc. Math. France, 43 (1915), 161–248 | MR | Zbl

[6] G. A. Kalyabin, “Novye primery funktsii Pompeiyu”, Mezhdunarodnaya konferentsiya “Teoriya funktsii i funktsionalnyi analiz”, Tezisy, Astana, 2012, 47–48