Supersolvability of Finite Factorizable Groups with Cyclic Sylow Subgroups in the Factors
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 911-920.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p$ be a prime. Under certain additional conditions, we establish the $p$-supersolvability of a finite $p$-solvable group $G=AB$ with cyclic Sylow $p$-subgroups in $A$ and $B$. In particular, we prove that a finite group $G=AB$ is supersolvable provided that all Sylow subgroups in $A$ and $B$ are cyclic and either $G$ is 2-closed or $A$ and $B$ are maximal subgroups.
Keywords: finite group, solvability, supersolvability, Sylow subgroup, cyclic subgroup.
@article{MZM_2014_96_6_a10,
     author = {V. S. Monakhov and I. K. Chirik},
     title = {Supersolvability of {Finite} {Factorizable} {Groups} with {Cyclic} {Sylow} {Subgroups} in the {Factors}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {911--920},
     publisher = {mathdoc},
     volume = {96},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a10/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - I. K. Chirik
TI  - Supersolvability of Finite Factorizable Groups with Cyclic Sylow Subgroups in the Factors
JO  - Matematičeskie zametki
PY  - 2014
SP  - 911
EP  - 920
VL  - 96
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a10/
LA  - ru
ID  - MZM_2014_96_6_a10
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A I. K. Chirik
%T Supersolvability of Finite Factorizable Groups with Cyclic Sylow Subgroups in the Factors
%J Matematičeskie zametki
%D 2014
%P 911-920
%V 96
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a10/
%G ru
%F MZM_2014_96_6_a10
V. S. Monakhov; I. K. Chirik. Supersolvability of Finite Factorizable Groups with Cyclic Sylow Subgroups in the Factors. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 911-920. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a10/

[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006

[2] B. Huppert, Endliche Gruppen. I, Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin, 1990 | MR

[3] Ya. G. Berkovich, “O razreshimykh gruppakh konechnogo poryadka”, Matem. sb., 74:1 (1967), 75–92 | MR | Zbl

[4] V. D. Mazurov, “O faktorizatsii konechnykh grupp”, XII Vsesoyuznyi algebraicheskii kollokvium, Tezisy soobschenii. Tetrad 1, IMM UrO AN SSSR, Sverdlovsk, 1973

[5] V. D. Mazurov, Zamechaniya o konechnykh gruppakh, Dep. v VINITI No 404-74, 1974

[6] M. Asaad, V. S. Monakhov, “Some sufficient conditions for a finite group to be supersolvable”, Acta Math. Hungar., 135:1-2 (2012), 168–173 | DOI | MR | Zbl

[7] V. S. Monakhov, “O chastichnoi sverkhrazreshimosti konechnoi faktorizuemoi gruppy”, Dokl. NAN Belarusi, 45:3 (2001), 32–36 | MR | Zbl

[8] V. D. Chertok, “Ob odnom klasse razreshimykh grupp”, Sib. matem. zhurn., 10:3 (1969), 712–715 | Zbl

[9] V. S. Monakhov, E. E. Gribovskaya, “O maksimalnykh i silovskikh podgruppakh konechnykh razreshimykh grupp”, Matem. zametki, 70:4 (2001), 603–612 | DOI | MR | Zbl

[10] V. S. Monakhov, A. A. Trofimuk, “O konechnykh razreshimykh gruppakh fiksirovannogo ranga”, Sib. matem. zhurn., 52:5 (2011), 1123–1137 | MR | Zbl

[11] V. S. Monakhov, O. A. Shpyrko, “O nilpotentnoi $\pi$-dline maksimalnykh podgrupp konechnykh $\pi$-razreshimykh grupp”, Vestn. Mosk. un–ta. Ser. 1. Matem., mekh., 2009, no. 6, 3–8 | MR

[12] J. C. Lennox, S. E. Stonehewer, Subnormal Subgroups of Groups, Oxford Math. Monogr., Clarendon Press, Oxford, 1987 | MR | Zbl

[13] L. S. Kazarin, “O gruppakh, predstavimykh v vide proizvedeniya dvukh razreshimykh podgrupp”, Comm. Algebra, 14:6 (1986), 1001–1066 | MR | Zbl

[14] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford Univ. Press, Oxford, 1985 | MR