Supersolvability of Finite Factorizable Groups with Cyclic Sylow Subgroups in the Factors
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 911-920

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p$ be a prime. Under certain additional conditions, we establish the $p$-supersolvability of a finite $p$-solvable group $G=AB$ with cyclic Sylow $p$-subgroups in $A$ and $B$. In particular, we prove that a finite group $G=AB$ is supersolvable provided that all Sylow subgroups in $A$ and $B$ are cyclic and either $G$ is 2-closed or $A$ and $B$ are maximal subgroups.
Keywords: finite group, solvability, supersolvability, Sylow subgroup, cyclic subgroup.
@article{MZM_2014_96_6_a10,
     author = {V. S. Monakhov and I. K. Chirik},
     title = {Supersolvability of {Finite} {Factorizable} {Groups} with {Cyclic} {Sylow} {Subgroups} in the {Factors}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {911--920},
     publisher = {mathdoc},
     volume = {96},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a10/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - I. K. Chirik
TI  - Supersolvability of Finite Factorizable Groups with Cyclic Sylow Subgroups in the Factors
JO  - Matematičeskie zametki
PY  - 2014
SP  - 911
EP  - 920
VL  - 96
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a10/
LA  - ru
ID  - MZM_2014_96_6_a10
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A I. K. Chirik
%T Supersolvability of Finite Factorizable Groups with Cyclic Sylow Subgroups in the Factors
%J Matematičeskie zametki
%D 2014
%P 911-920
%V 96
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a10/
%G ru
%F MZM_2014_96_6_a10
V. S. Monakhov; I. K. Chirik. Supersolvability of Finite Factorizable Groups with Cyclic Sylow Subgroups in the Factors. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 911-920. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a10/