On Willett's, Godunova--Levin's, and Rozanova's Opial-Type Inequalities with Related Stolarsky-Type Means
Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 803-819

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider generalizations of Opial's inequality due to Willett, Godunova, Levin, and Rozanova. Cauchy-type mean-value theorems are proved and used in studying Stolarsky-type means defined by the obtained inequalities. Also, a method of producing $n$-exponentially convex and exponentially convex functions is applied.
Keywords: Willett's inequality, Godunova–Levin's inequality, Rozanova's inequality, Cauchy mean-value theorems, exponential convexity, Stolarsky means.
@article{MZM_2014_96_6_a0,
     author = {M. Andric and A. Barbir and J. Pe\v{c}ari\'c},
     title = {On {Willett's,} {Godunova--Levin's,} and {Rozanova's} {Opial-Type} {Inequalities} with {Related} {Stolarsky-Type} {Means}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--819},
     publisher = {mathdoc},
     volume = {96},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a0/}
}
TY  - JOUR
AU  - M. Andric
AU  - A. Barbir
AU  - J. Pečarić
TI  - On Willett's, Godunova--Levin's, and Rozanova's Opial-Type Inequalities with Related Stolarsky-Type Means
JO  - Matematičeskie zametki
PY  - 2014
SP  - 803
EP  - 819
VL  - 96
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a0/
LA  - ru
ID  - MZM_2014_96_6_a0
ER  - 
%0 Journal Article
%A M. Andric
%A A. Barbir
%A J. Pečarić
%T On Willett's, Godunova--Levin's, and Rozanova's Opial-Type Inequalities with Related Stolarsky-Type Means
%J Matematičeskie zametki
%D 2014
%P 803-819
%V 96
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a0/
%G ru
%F MZM_2014_96_6_a0
M. Andric; A. Barbir; J. Pečarić. On Willett's, Godunova--Levin's, and Rozanova's Opial-Type Inequalities with Related Stolarsky-Type Means. Matematičeskie zametki, Tome 96 (2014) no. 6, pp. 803-819. http://geodesic.mathdoc.fr/item/MZM_2014_96_6_a0/