On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces
Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 738-746
Voir la notice de l'article provenant de la source Math-Net.Ru
Hodge's conjecture on algebraic cycles is proved for a smooth projective model $X$ of the fiber product $X_1\times_CX_2$ of nonisotrivial one-parameter families of K3 surfaces (possibly with degeneracies) under certain constraints on the ranks of the transcendental cycle lattices of the general geometric fibers $X_{ks}$ and representations of the Hodge groups $\operatorname{Hg}(X_{ks})$.
Keywords:
Hodge's conjecture on algebraic cycles, K3 surface, smooth projective model.
@article{MZM_2014_96_5_a9,
author = {O. V. Nikol'skaya},
title = {On {Algebraic} {Cohomology} {Classes} on a {Smooth} {Model} of a {Fiber} {Product} of {Families} of {K3} surfaces},
journal = {Matemati\v{c}eskie zametki},
pages = {738--746},
publisher = {mathdoc},
volume = {96},
number = {5},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a9/}
}
TY - JOUR AU - O. V. Nikol'skaya TI - On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces JO - Matematičeskie zametki PY - 2014 SP - 738 EP - 746 VL - 96 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a9/ LA - ru ID - MZM_2014_96_5_a9 ER -
O. V. Nikol'skaya. On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 738-746. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a9/