Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_96_5_a9, author = {O. V. Nikol'skaya}, title = {On {Algebraic} {Cohomology} {Classes} on a {Smooth} {Model} of a {Fiber} {Product} of {Families} of {K3} surfaces}, journal = {Matemati\v{c}eskie zametki}, pages = {738--746}, publisher = {mathdoc}, volume = {96}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a9/} }
TY - JOUR AU - O. V. Nikol'skaya TI - On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces JO - Matematičeskie zametki PY - 2014 SP - 738 EP - 746 VL - 96 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a9/ LA - ru ID - MZM_2014_96_5_a9 ER -
O. V. Nikol'skaya. On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 738-746. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a9/
[1] W. V. D. Hodge, “The topological invariants of algebraic varieties”, Proceedings of the International Congress of Mathematicians, V. 1 (Cambridge, MA, 1950), Amer. Math. Soc., Providence, RI, 1952, 182–192 | MR | Zbl
[2] O. V. Nikolskaya, “Ob algebraicheskikh tsiklakh na rassloennom proizvedenii semeistv K3-poverkhnostei”, Izv. RAN. Ser. matem., 77:1 (2013), 145–164 | DOI | MR | Zbl
[3] S. G. Tankeev, “O standartnoi gipoteze dlya kompleksnykh 4-mernykh ellipticheskikh mnogoobrazii”, Izv. RAN. Ser. matem., 76:5 (2012), 119–142 | DOI | MR | Zbl
[4] S. G. Tankeev, “O standartnoi gipoteze dlya kompleksnykh 4-mernykh ellipticheskikh mnogoobrazii i kompaktifikatsii minimalnykh modelei Nerona”, Izv. RAN. Ser. matem., 78:1 (2014), 181–214 | DOI | MR | Zbl
[5] Ch. Vial, “Projectors on the intermediate algebraic Jacobians”, New York J. Math., 19 (2013), 793–822 | MR | Zbl
[6] G. Kempf, F. F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal Embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl
[7] S. G. Tankeev, “Ob arifmetike i geometrii obschego giperpoverkhnostnogo secheniya”, Izv. RAN. Ser. matem., 66:2 (2002), 173–204 | DOI | MR | Zbl
[8] S. G. Tankeev, “Monoidalnye preobrazovaniya i gipotezy ob algebraicheskikh tsiklakh”, Izv. RAN. Ser. matem., 71:3 (2007), 197–224 | DOI | MR | Zbl
[9] P. Delin, “Teoriya Khodzha. II”, Matematika. Sb. per., 17:5 (1973), 3–56; P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40 (1971), 5–57 | DOI | MR | Zbl
[10] Yu. G. Zarkhin, “Vesa prostykh algebr Li v kogomologiyakh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 264–304 | MR | Zbl
[11] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44 (1974), 5–77 | DOI | MR | Zbl
[12] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. of Math. (2), 109:3 (1979), 415–476 | DOI | MR | Zbl
[13] Yu. G. Zarhin, “Hodge groups of $K3$ surfaces”, J. Reine Angew. Math., 341 (1983), 193–220 | MR
[14] G. A. Mustafin, “Semeistva algebraicheskikh mnogoobrazii i invariantnye tsikly”, Izv. AN SSSR. Ser. matem., 49:5 (1985), 948–978 | MR | Zbl
[15] M. Okamoto, “On a certain decomposition of $2$-dimensional cycles on a product of two algebraic surfaces”, Proc. Japan Acad. Ser. A Math. Sci., 57:6 (1981), 321–325 | DOI | MR | Zbl