On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces
Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 738-746

Voir la notice de l'article provenant de la source Math-Net.Ru

Hodge's conjecture on algebraic cycles is proved for a smooth projective model $X$ of the fiber product $X_1\times_CX_2$ of nonisotrivial one-parameter families of K3 surfaces (possibly with degeneracies) under certain constraints on the ranks of the transcendental cycle lattices of the general geometric fibers $X_{ks}$ and representations of the Hodge groups $\operatorname{Hg}(X_{ks})$.
Keywords: Hodge's conjecture on algebraic cycles, K3 surface, smooth projective model.
@article{MZM_2014_96_5_a9,
     author = {O. V. Nikol'skaya},
     title = {On {Algebraic} {Cohomology} {Classes} on a {Smooth} {Model} of a {Fiber} {Product} of {Families} of {K3} surfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {738--746},
     publisher = {mathdoc},
     volume = {96},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a9/}
}
TY  - JOUR
AU  - O. V. Nikol'skaya
TI  - On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces
JO  - Matematičeskie zametki
PY  - 2014
SP  - 738
EP  - 746
VL  - 96
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a9/
LA  - ru
ID  - MZM_2014_96_5_a9
ER  - 
%0 Journal Article
%A O. V. Nikol'skaya
%T On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces
%J Matematičeskie zametki
%D 2014
%P 738-746
%V 96
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a9/
%G ru
%F MZM_2014_96_5_a9
O. V. Nikol'skaya. On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 738-746. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a9/