On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces
Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 738-746.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hodge's conjecture on algebraic cycles is proved for a smooth projective model $X$ of the fiber product $X_1\times_CX_2$ of nonisotrivial one-parameter families of K3 surfaces (possibly with degeneracies) under certain constraints on the ranks of the transcendental cycle lattices of the general geometric fibers $X_{ks}$ and representations of the Hodge groups $\operatorname{Hg}(X_{ks})$.
Keywords: Hodge's conjecture on algebraic cycles, K3 surface, smooth projective model.
@article{MZM_2014_96_5_a9,
     author = {O. V. Nikol'skaya},
     title = {On {Algebraic} {Cohomology} {Classes} on a {Smooth} {Model} of a {Fiber} {Product} of {Families} of {K3} surfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {738--746},
     publisher = {mathdoc},
     volume = {96},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a9/}
}
TY  - JOUR
AU  - O. V. Nikol'skaya
TI  - On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces
JO  - Matematičeskie zametki
PY  - 2014
SP  - 738
EP  - 746
VL  - 96
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a9/
LA  - ru
ID  - MZM_2014_96_5_a9
ER  - 
%0 Journal Article
%A O. V. Nikol'skaya
%T On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces
%J Matematičeskie zametki
%D 2014
%P 738-746
%V 96
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a9/
%G ru
%F MZM_2014_96_5_a9
O. V. Nikol'skaya. On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 738-746. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a9/

[1] W. V. D. Hodge, “The topological invariants of algebraic varieties”, Proceedings of the International Congress of Mathematicians, V. 1 (Cambridge, MA, 1950), Amer. Math. Soc., Providence, RI, 1952, 182–192 | MR | Zbl

[2] O. V. Nikolskaya, “Ob algebraicheskikh tsiklakh na rassloennom proizvedenii semeistv K3-poverkhnostei”, Izv. RAN. Ser. matem., 77:1 (2013), 145–164 | DOI | MR | Zbl

[3] S. G. Tankeev, “O standartnoi gipoteze dlya kompleksnykh 4-mernykh ellipticheskikh mnogoobrazii”, Izv. RAN. Ser. matem., 76:5 (2012), 119–142 | DOI | MR | Zbl

[4] S. G. Tankeev, “O standartnoi gipoteze dlya kompleksnykh 4-mernykh ellipticheskikh mnogoobrazii i kompaktifikatsii minimalnykh modelei Nerona”, Izv. RAN. Ser. matem., 78:1 (2014), 181–214 | DOI | MR | Zbl

[5] Ch. Vial, “Projectors on the intermediate algebraic Jacobians”, New York J. Math., 19 (2013), 793–822 | MR | Zbl

[6] G. Kempf, F. F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal Embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl

[7] S. G. Tankeev, “Ob arifmetike i geometrii obschego giperpoverkhnostnogo secheniya”, Izv. RAN. Ser. matem., 66:2 (2002), 173–204 | DOI | MR | Zbl

[8] S. G. Tankeev, “Monoidalnye preobrazovaniya i gipotezy ob algebraicheskikh tsiklakh”, Izv. RAN. Ser. matem., 71:3 (2007), 197–224 | DOI | MR | Zbl

[9] P. Delin, “Teoriya Khodzha. II”, Matematika. Sb. per., 17:5 (1973), 3–56; P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40 (1971), 5–57 | DOI | MR | Zbl

[10] Yu. G. Zarkhin, “Vesa prostykh algebr Li v kogomologiyakh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 264–304 | MR | Zbl

[11] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44 (1974), 5–77 | DOI | MR | Zbl

[12] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. of Math. (2), 109:3 (1979), 415–476 | DOI | MR | Zbl

[13] Yu. G. Zarhin, “Hodge groups of $K3$ surfaces”, J. Reine Angew. Math., 341 (1983), 193–220 | MR

[14] G. A. Mustafin, “Semeistva algebraicheskikh mnogoobrazii i invariantnye tsikly”, Izv. AN SSSR. Ser. matem., 49:5 (1985), 948–978 | MR | Zbl

[15] M. Okamoto, “On a certain decomposition of $2$-dimensional cycles on a product of two algebraic surfaces”, Proc. Japan Acad. Ser. A Math. Sci., 57:6 (1981), 321–325 | DOI | MR | Zbl