Differential Lie Modules over Curved Colored Coalgebras and $\infty$-Simplicial Modules
Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 709-731.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of differential Lie module over a curved colored coalgebra is introduced. The homotopy invariance of the structure of differential Lie module over a curved colored coalgebra is proved. The notion of $\infty$-simplicial module is introduced using the construction of a differential Lie module over a curved colored coalgebra and the Koszul duality theory for quadratic-scalar colored algebras. The homotopy invariance of the structure of a $\infty$-simplicial module is proved.
Keywords: differential Lie module, curved colored coalgebra, $\infty$-simplicial module.
@article{MZM_2014_96_5_a7,
     author = {S. V. Lapin},
     title = {Differential {Lie} {Modules} over {Curved} {Colored} {Coalgebras} and $\infty${-Simplicial} {Modules}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {709--731},
     publisher = {mathdoc},
     volume = {96},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a7/}
}
TY  - JOUR
AU  - S. V. Lapin
TI  - Differential Lie Modules over Curved Colored Coalgebras and $\infty$-Simplicial Modules
JO  - Matematičeskie zametki
PY  - 2014
SP  - 709
EP  - 731
VL  - 96
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a7/
LA  - ru
ID  - MZM_2014_96_5_a7
ER  - 
%0 Journal Article
%A S. V. Lapin
%T Differential Lie Modules over Curved Colored Coalgebras and $\infty$-Simplicial Modules
%J Matematičeskie zametki
%D 2014
%P 709-731
%V 96
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a7/
%G ru
%F MZM_2014_96_5_a7
S. V. Lapin. Differential Lie Modules over Curved Colored Coalgebras and $\infty$-Simplicial Modules. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 709-731. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a7/

[1] V. A. Smirnov, “$A_\infty$-simplitsialnye ob'ekty i $A_\infty$-topologicheskie gruppy”, Matem. zametki, 66:6 (1999), 913–919 | DOI | MR | Zbl

[2] V. K. A. M. Gugenheim, L. A. Lambe, J. D. Stasheff, “Perturbation theory in differential homological algebra. II”, Illinois J. Math., 35:3 (1991), 357–373 | MR | Zbl

[3] V. A. Smirnov, “Gomologii $B$-konstruktsii i ko-$B$-konstruktsii”, Izv. RAN. Ser. matem., 58:4 (1994), 80–96 | MR | Zbl

[4] L. E. Positselskii, “Neodnorodnaya kvadratichnaya dvoistvennost i krivizna”, Funkts. analiz i ego pril., 27:3 (1993), 57–66 | MR | Zbl

[5] J.-L. Loday, B. Vallette, Algebraic Operads, Grundlehren Math. Wiss., 346, Springer-Verlag, Berlin, 2012 | MR | Zbl

[6] S. V. Lapin, “Gomotopicheskie svoistva differentsialnykh modulei Li nad iskrivlennymi koalgebrami i dvoistvennost po Koshulyu”, Matem. zametki, 94:3 (2013), 354–372 | DOI | MR | Zbl

[7] V. A. Smirnov, “Algebry Li nad operadami i ikh primenenie v teorii gomotopii”, Izv. RAN. Ser. matem., 62:3 (1998), 121–154 | DOI | MR | Zbl

[8] V. A. Smirnov, Simplitsialnye i operadnye metody v algebraicheskoi topologii, Faktorial, M., 2002