Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_96_4_a8, author = {A. V. Romanov}, title = {A {Parabolic} {Equation} with {Nonlocal} {Diffusion} without a {Smooth} {Inertial} {Manifold}}, journal = {Matemati\v{c}eskie zametki}, pages = {578--587}, publisher = {mathdoc}, volume = {96}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a8/} }
A. V. Romanov. A Parabolic Equation with Nonlocal Diffusion without a Smooth Inertial Manifold. Matematičeskie zametki, Tome 96 (2014) no. 4, pp. 578-587. http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a8/
[1] E. Hopf, “A mathematical example displaying features of turbulence”, Comm. Pure Appl. Math., 1:4 (1948), 303–322 | DOI | MR | Zbl
[2] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR | Zbl
[3] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl
[4] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, Springer, New York, 1997 | DOI | MR | Zbl
[5] R. Mañé, “Reduction semilinear parabolic equations to finite dimensional $C^1$-flows”, Geometry and Topology, Lecture Notes in Math., 597, Springer, New York, 1977, 361–378 | DOI | MR | Zbl
[6] C. Foias, G. R. Sell, R. Temam, “Variétés inertielles des équations différentielles dissipatives”, C. R. Acad. Sci. Paris Sér. I, 301:5 (1985), 139–141 | MR | Zbl
[7] M. Miklavčič, “A sharp condition for existence of an inertial manifold”, J. Dynam. Differential Equations, 3:3 (1991), 437–456 | DOI | MR | Zbl
[8] A. V. Romanov, “Tochnye otsenki razmernosti inertsialnykh mnogoobrazii dlya nelineinykh parabolicheskikh uravnenii”, Izv. RAN. Ser. matem., 57:4 (1993), 36–54 | MR | Zbl
[9] S. Zelik, Inertial Manifolds and Finite-Dimensional Reduction for Dissipative PDEs, 2013, arXiv: math.AP/1303.4457
[10] J. Mallet-Paret, G. R. Sell, “Inertial manifolds for reaction diffusion equations in higher space dimensions”, J. Amer. Math. Soc., 1:4 (1988), 805–866 | DOI | MR | Zbl
[11] J. Vukadinovic, “Global dissipativity and inertial manifolds for diffusive Burgers equations with low-wavenumber instability”, Discrete Contin. Dyn. Syst., 29:1 (2011), 327–341 | DOI | MR | Zbl
[12] A. V. Romanov, “Tri kontrprimera v teorii inertsialnykh mnogoobrazii”, Matem. zametki, 68:3 (2000), 439–447 | DOI | MR | Zbl
[13] A. Eden, S. V. Zelik, V. K. Kalantarov, “Kontrprimery k regulyarnosti proektsii Mane v teorii attraktorov”, UMN, 68:2 (2013), 3–32 | DOI | MR | Zbl
[14] A. V. Romanov, “O konechnomernoi dinamike parabolicheskikh uravnenii”, Nelineinyi dinamicheskii analiz (NDA'2). Vtoroi mezhdunarodnyi kongress. Tezisy dokladov, Izd-vo MAI, M., 2002, 195
[15] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR | Zbl
[16] P. P. Zabreiko, A. I. Koshelev, M. A. Krasnoselskii, S. G. Mikhlin, L. S. Rakovschik, V. Ya. Stetsenko, Integralnye uravneniya, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1968 | Zbl
[17] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl