A Parabolic Equation with Nonlocal Diffusion without a Smooth Inertial Manifold
Matematičeskie zametki, Tome 96 (2014) no. 4, pp. 578-587.

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of parabolic integro-differential equations with nonlocal diffusion on the circle which have no smooth inertial manifold is presented.
Keywords: inertial manifold, semilinear parabolic equation, Hilbert integral operator.
Mots-clés : nonlocal diffusion
@article{MZM_2014_96_4_a8,
     author = {A. V. Romanov},
     title = {A {Parabolic} {Equation} with {Nonlocal} {Diffusion} without a {Smooth} {Inertial} {Manifold}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {578--587},
     publisher = {mathdoc},
     volume = {96},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a8/}
}
TY  - JOUR
AU  - A. V. Romanov
TI  - A Parabolic Equation with Nonlocal Diffusion without a Smooth Inertial Manifold
JO  - Matematičeskie zametki
PY  - 2014
SP  - 578
EP  - 587
VL  - 96
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a8/
LA  - ru
ID  - MZM_2014_96_4_a8
ER  - 
%0 Journal Article
%A A. V. Romanov
%T A Parabolic Equation with Nonlocal Diffusion without a Smooth Inertial Manifold
%J Matematičeskie zametki
%D 2014
%P 578-587
%V 96
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a8/
%G ru
%F MZM_2014_96_4_a8
A. V. Romanov. A Parabolic Equation with Nonlocal Diffusion without a Smooth Inertial Manifold. Matematičeskie zametki, Tome 96 (2014) no. 4, pp. 578-587. http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a8/

[1] E. Hopf, “A mathematical example displaying features of turbulence”, Comm. Pure Appl. Math., 1:4 (1948), 303–322 | DOI | MR | Zbl

[2] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR | Zbl

[3] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[4] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, Springer, New York, 1997 | DOI | MR | Zbl

[5] R. Mañé, “Reduction semilinear parabolic equations to finite dimensional $C^1$-flows”, Geometry and Topology, Lecture Notes in Math., 597, Springer, New York, 1977, 361–378 | DOI | MR | Zbl

[6] C. Foias, G. R. Sell, R. Temam, “Variétés inertielles des équations différentielles dissipatives”, C. R. Acad. Sci. Paris Sér. I, 301:5 (1985), 139–141 | MR | Zbl

[7] M. Miklavčič, “A sharp condition for existence of an inertial manifold”, J. Dynam. Differential Equations, 3:3 (1991), 437–456 | DOI | MR | Zbl

[8] A. V. Romanov, “Tochnye otsenki razmernosti inertsialnykh mnogoobrazii dlya nelineinykh parabolicheskikh uravnenii”, Izv. RAN. Ser. matem., 57:4 (1993), 36–54 | MR | Zbl

[9] S. Zelik, Inertial Manifolds and Finite-Dimensional Reduction for Dissipative PDEs, 2013, arXiv: math.AP/1303.4457

[10] J. Mallet-Paret, G. R. Sell, “Inertial manifolds for reaction diffusion equations in higher space dimensions”, J. Amer. Math. Soc., 1:4 (1988), 805–866 | DOI | MR | Zbl

[11] J. Vukadinovic, “Global dissipativity and inertial manifolds for diffusive Burgers equations with low-wavenumber instability”, Discrete Contin. Dyn. Syst., 29:1 (2011), 327–341 | DOI | MR | Zbl

[12] A. V. Romanov, “Tri kontrprimera v teorii inertsialnykh mnogoobrazii”, Matem. zametki, 68:3 (2000), 439–447 | DOI | MR | Zbl

[13] A. Eden, S. V. Zelik, V. K. Kalantarov, “Kontrprimery k regulyarnosti proektsii Mane v teorii attraktorov”, UMN, 68:2 (2013), 3–32 | DOI | MR | Zbl

[14] A. V. Romanov, “O konechnomernoi dinamike parabolicheskikh uravnenii”, Nelineinyi dinamicheskii analiz (NDA'2). Vtoroi mezhdunarodnyi kongress. Tezisy dokladov, Izd-vo MAI, M., 2002, 195

[15] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR | Zbl

[16] P. P. Zabreiko, A. I. Koshelev, M. A. Krasnoselskii, S. G. Mikhlin, L. S. Rakovschik, V. Ya. Stetsenko, Integralnye uravneniya, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1968 | Zbl

[17] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl