On a Method for Deriving Formulas for the Jacobi Theta Functions
Matematičeskie zametki, Tome 96 (2014) no. 4, pp. 504-511.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method for deriving formulas for the Jacobi theta functions is considered.
Keywords: Jacobi theta function, Ramanujan's generalized theta function.
Mots-clés : Laurent series
@article{MZM_2014_96_4_a2,
     author = {S. E. Gladun},
     title = {On a {Method} for {Deriving} {Formulas} for the {Jacobi} {Theta} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {504--511},
     publisher = {mathdoc},
     volume = {96},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a2/}
}
TY  - JOUR
AU  - S. E. Gladun
TI  - On a Method for Deriving Formulas for the Jacobi Theta Functions
JO  - Matematičeskie zametki
PY  - 2014
SP  - 504
EP  - 511
VL  - 96
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a2/
LA  - ru
ID  - MZM_2014_96_4_a2
ER  - 
%0 Journal Article
%A S. E. Gladun
%T On a Method for Deriving Formulas for the Jacobi Theta Functions
%J Matematičeskie zametki
%D 2014
%P 504-511
%V 96
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a2/
%G ru
%F MZM_2014_96_4_a2
S. E. Gladun. On a Method for Deriving Formulas for the Jacobi Theta Functions. Matematičeskie zametki, Tome 96 (2014) no. 4, pp. 504-511. http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a2/

[1] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza. Ch. 2. Transtsendentnye funktsii, GIFML, M., 1963

[2] B. C. Berndt, Ramanujan's Notebooks, Part V, Springer-Verlag, New York, 1998 | MR | Zbl

[3] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991 | MR | Zbl

[4] B. A. Dubrovin, “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[5] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Mateveev, Algebro-Geometrical Approach to Nonlinear Evolution Equations, Springer Ser. Nonlinear Dynamics, Springer-Verlag, New York, 1994

[6] G. E. Andrews, “An introduction to Ramanujan's “lost” notebook”, Amer. Math. Monthly, 86:2 (1979), 89–108 | DOI | MR | Zbl

[7] G. E. Andrews, “Ramanujan's “lost” notebook III. The Rogers–Ramanujan continued fraction”, Adv.in Math., 41:2 (1981), 186–208 | DOI | MR | Zbl

[8] G. E. Andrews, B. C. Berndt, Ramanujan's Lost Notebook, Part I, Springer-Verlag, New York, 2005 | MR | Zbl

[9] G. E. Andrews, B. C. Berndt, Ramanujan's Lost Notebook, Part II, Springer-Verlag, New York, 2009 | MR | Zbl

[10] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publ. House, New Delhi, 1988 | MR | Zbl

[11] D. Bowman, J. McLaughlin, A. V. Sills, “Some more identities of Rogers–Ramanujan type”, Ramanujan J., 18:3 (2009), 307–325 | DOI | MR | Zbl

[12] J. McLaughlin, A. V. Sills, “Rogers–Ramanujan–Slater type identities”, Electron. J. Combin., 2008, Dynamic Survey, #DS15